|
第二章 1. Shah, P. S.; Hanrath, T.; Johnston, K. P.; Korgel, B. A., Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids. J Phys Chem B 2004, 108 (28), 9574-9587. 2. Jessop, P. G.; Ikariya, T.; Noyori, R., Homogeneous catalysis in supercritical fluids. Chemical Reviews 1999, 99 (2), 475-493. 3. Eastoe, J.; Gold, S.; Steytler, D. C., Surfactants for CO2. Langmuir 2006, 22 (24), 9832-9842. 4. Liu, Z. T.; Wu, J.; Liu, L.; Sun, C. A.; Song, L. P.; Gao, Z. W.; Dong, W. S.; Lu, J., Solubilities of AOT analogues surfactants in supercritical CO2 and HFC-134a fluids. J Chem Eng Data 2006, 51 (5), 1761-1768. 5. Tan, B.; Lee, J. Y.; Cooper, A. I., Ionic hydrocarbon surfactants for emulsification and dispersion polymerization in supercritical CO2. Macromolecules 2006, 39 (22), 7471-7473. 6. Jessop, P. G., Leitner W., Chemical synthesis using supercritical fluids. Wiley-VCH: New York, 1999; p 10. 7. Jessop, P. G., Leitner W., Chemical synthesis using supercritical fluids. Wiley-VCH: New York, 1999; p 4~5. 8. Raveendran, P.; Ikushima, Y.; Wallen, S. L., Polar attributes of supercritical carbon dioxide. Accounts Chem Res 2005, 38 (6), 478-485. 9. Sato, H.; Matubayasi, N.; Nakahara, M.; Hirata, F., Which carbon oxide is more soluble? Ab initio study on carbon monoxide and dioxide in aqueous solution. Chemical Physics Letters 2000, 323 (3-4), 257-262. 10. Kazarian, S.; Vincent, M.; Bright, F.; Liotta, C.; Eckert, C., Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 1996, 118 (7), 1729-1736. 11. Raveendran, P.; Wallen, S., Exploring CO2-philicity: Effects of stepwise fluorination. The journal of physical chemistry. B 2003, 107 (6), 1473-1477. 12. Hallett, J.; Kitchens, C.; Hernandez, R.; Liotta, C.; Eckert, C., Probing the cybotactic region in gas-expanded liquids (GXLs). Accounts Chem Res 2006, 39 (8), 531-538. 13. Jessop, P. G.; Subramaniam, B., Gas-expanded liquids. Chemical Reviews 2007, 107 (6), 2666-2694. 14. Akien, G.; Poliakoff, M., A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green chemistry 2009, 11 (8), 1083-1100. 15. Kordikowski, A.; Schenk, A.; VanNielen, R.; Peters, C., Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. The Journal of supercritical fluids 1995, 8 (3), 205-216. 16. Kamlet, M.; Abboud, J.; Taft, R., Solvatochromic comparison method .6. pi-star scale of solvent polarities. J Am Chem Soc 1977, 99 (18), 6027-6038. 17. Wyatt, V.; Bush, D.; Lu, J.; Hallett, J.; Liotta, C.; Eckert, C., Determination of solvatochromic solvent parameters for the characterization of gas-expanded liquids. The Journal of supercritical fluids 2005, 36 (1), 16-22. 18. Lin, I.; Tan, C., Diffusion of benzonitrile in CO2-expanded ethanol. Journal of chemical & engineering data 2008, 53 (8), 1886-1891. 19. Lin, I.; Tan, C., Measurement of diffusion coefficients of p-chloronitrobenzene in CO2-expanded methanol. The Journal of supercritical fluids 2008, 46 (2), 112-117. 20. Sassiat, P.; Mourier, P.; Caude, M.; Rosset, R., Measurement of diffusion-coefficients in supercritical carbon-dioxide and correlation with the equation of wilke and chang. Analytical chemistry 1987, 59 (8), 1164-1170. 21. Maxey, N. B., Ph.D. dissertation. Georgia Institute of Technology, 2006. 22. Christov, M.; Dohrn, R., High-pressure fluid phase equilibria - Experimental methods and systems investigated (1994-1999). Fluid phase equilibria 2002, 202 (1), 153-218. 23. Yin, J.; Tan, C., Solubility of hydrogen in toluene for the ternary system H2+CO2+ toluene from 305 to 343 K and 1.2 to 10.5 MPa. Fluid phase equilibria 2006, 242 (2), 111-117. 24. Lopez-Castillo, Z.; Aki, S.; Stadtherr, M.; Brennecke, J., Enhanced solubility of oxygen and carbon monoxide in CO2-expanded liquids. Industrial & engineering chemistry research 2006, 45 (15), 5351-5360. 25. Musie, G.; Wei, M.; Subramaniam, B.; Busch, D. H., Catalytic oxidations in carbon dioxide-based reaction media, including novel CO2-expanded phases. Coordin Chem Rev 2001, 219, 789-820. 26. Trindade, T.; O'Brien, P.; Pickett, N. L., Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem Mater 2001, 13 (11), 3843-3858. 27. Jun, Y. W.; Choi, J. S.; Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Edit 2006, 45 (21), 3414-3439. 28. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Edit 2007, 46 (25), 4630-4660. 29. Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmuller, A.; Weller, H., Cds Nanoclusters - Synthesis, Characterization, Size-Dependent Oscillator Strength, Temperature Shift of the Excitonic-Transition Energy, and Reversible Absorbency Shift. J Phys Chem-Us 1994, 98 (31), 7665-7673. 30. Li, L.; Hu, J.; Yang, W.; Alivisatos, A., Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett 2001, 1 (7), 349-351. 31. Kim, Y.; Jun, Y.; Jun, B.; Lee, S.; Cheon, J., Sterically induced shape and crystalline phase control of GaP nanocrystals. J Am Chem Soc 2002, 124 (46), 13656-13657. 32. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and Characterization of Chem Soc 1993, 115 (19), 8706-8715. 33. Park, J.; Lee, E.; Hwang, N. M.; Kang, M. S.; Kim, S. C.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kini, J. Y.; Park, J. H.; Hyeon, T., One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Edit 2005, 44 (19), 2872-2877. 34. Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I., Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J Am Chem Soc 2002, 124 (10), 2305-2311. 35. Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A., Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287 (5457), 1471-1473. 36. Hanrath, T.; Korgel, B. A., Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. J Am Chem Soc 2002, 124 (7), 1424-1429. 37. Penn, R. L.; Banfield, J. F., Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Geochim Cosmochim Ac 1999, 63 (10), 1549-1557. 38. Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B., Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 2005, 127 (19), 7140-7147. 39. Zhang, H. Z.; Huang, F.; Gilbert, B.; Banfield, J. F., Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles. J Phys Chem B 2003, 107 (47), 13051-13060. 40. Manna, L.; Scher, E. C.; Alivisatos, A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 2000, 122 (51), 12700-12706. 41. Ghezelbash, A.; Korgel, B. A., Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir 2005, 21 (21), 9451-9456.
第五章 1. Bonnemann, H.; Richards, R. M., Nanoscopic metal particles - Synthetic methods and potential applications. Eur J Inorg Chem 2001, (10), 2455-2480. 2. Alivisatos, A., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271 (5251), 933-937. 3. Murray, C. B.; Norris, D. J.; Bawendi, M. G., Synthesis and Characterization of Nearly Monodisperse Cde (E = S, Se, Te) Semiconductor Nanocrystallites. J Am Chem Soc 1993, 115 (19), 8706-8715. 4. Yuranova, T.; Rincon, A.; Bozzi, A.; Parra, S.; Pulgarin, C.; Albers, P., Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. Journal of photochemistry and photobiology. A, Chemistry 2003, 161 (1), 27-34. 5. Miola, M.; Ferraris, S.; Nunzio, S.; Robotti, P.; Bianchi, G.; Fucale, G., Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: plasma sprayed glass-coatings. Journal of materials science. Materials in medicine 2009, 20 (3), 741-749. 6. Verne, E.; Di Nunzio, S.; Bosetti, M.; Appendino, P.; Brovarone, C.; Maina, G., Surface characterization of silver-doped bioactive glass. Biomaterials 2005, 26 (25), 5111-5119. 7. Shon, Y. S.; Cutler, E., Aqueous synthesis of alkanethiolate-protected Ag nanoparticles using bunte salts. Langmuir 2004, 20 (16), 6626-6630. 8. Chen, M.; Wang, L. Y.; Han, J. T.; Zhang, J. Y.; Li, Z. Y.; Qian, D. J., Preparation and study of polyacryamide-stabilized silver nanoparticles through a one-pot process. J Phys Chem B 2006, 110 (23), 11224-11231. 9. Sun, Y. G.; Xia, Y. N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298 (5601), 2176-2179. 10. Lin, X. Z.; Teng, X. W.; Yang, H., Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir 2003, 19 (24), 10081-10085. 11. Bunge, S. D.; Boyle, T. J.; Headley, T. J., Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett 2003, 3 (7), 901-905. 12. Chen, Y. Z.; Peng, D. L.; Lin, D. P.; Luo, X. H., Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 2007, 18 (50), -. 13. Taleb, A.; Petit, C.; Pileni, M., Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2D and 3D self-organization. Chem Mater 1997, 9 (4), 950-959. 14. Setua, P.; Chakraborty, A.; Seth, D.; Bhatta, M.; Satyam, P.; Sarkar, N., Synthesis, optical properties, and surfact enhanced Raman scattering of silver nanoparticles in nonaqueous methanol reverse micelles. The journal of physical chemistry. C 2007, 111 (10), 3901-3907. 15. Henglein, A.; Giersig, M., Formation of colloidal silver nanoparticles: Capping action of citrate. The journal of physical chemistry. B 1999, 103 (44), 9533-9539. 16. Callegari, A.; Tonti, D.; Chergui, M., Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 2003, 3 (11), 1565-1568. 17. Muller, F.; Peukert, W.; Polke, R.; Stenger, F., Dispersing nanoparticles in liquids. Int J Miner Process 2004, 74, S31-S41. 18. Froeschke, S.; Kohler, S.; Weber, A. P.; Kasper, G., Impact fragmentation of nanoparticle agglomerates. J Aerosol Sci 2003, 34 (3), 275-287. 19. Seipenbusch, M.; Toneva, P.; Peukert, W.; Weber, A. P., Impact fragmentation of metal nanoparticle agglomerates. Part Part Syst Char 2007, 24 (3), 193-200. 20. Wengeler, R.; Teleki, A.; Vetter, M.; Pratsinis, S. E.; Nirschl, H., High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates. Langmuir 2006, 22 (11), 4928-4935. 21. Wengeler, R.; Nirschl, H., Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates. J Colloid Interf Sci 2007, 306 (2), 262-273. 22. Wengeler, R.; Wolf, F.; Dingenouts, N.; Nirschl, H., Characterizing dispersion and fragmentation of fractal, pyrogenic silica nanoagglomerates by small-angle x-ray scattering. Langmuir 2007, 23 (8), 4148-4154. 23. Kamiwano, M.; Nishi, K.; Inoue, Y., EP850682-A; EP850682-A1; JP10192670-A; SG60111-A1; US5921478-A; KR98063361-A; KR283238-B; CN1185990-A; CN1057480-C, EP850682-A EP850682-A1 01 Jul 1998 B01F-003/12 199830. 24. Wei, D.; Dave, R.; Pfeffer, R., Mixing and characterization of nanosized powders: An assessment of different techniques. Journal of nanoparticle research 2002, 4 (1-2), 21-41. 25. Rouse, M. W.; Deeb, V. M., US2003026975-A1; US6663954-B2, US2003026975-A1 06 Feb 2003 B32B-005/16 200341. 26. Rouse, M. W.; Deeb, V. M., US6426136-B1, US6426136-B1 30 Jul 2002 B32B-005/16 200321 Pages: 7. 27. Deeb, V. M.; Rouse, M. W., EP1186625-A; EP1186625-A2; CA2356800-A1; BR200103927-A; JP2002126562-A; US6680110-B1, EP1186625-A EP1186625-A2 13 Mar 2002 C08J-003/12 200237. 28. Cheng, W. T.; Hsu, C. W.; Chih, Y., Dispersion of organic pigments using supercritical carbon dioxide. J Colloid Interf Sci 2004, 270 (1), 106-112. 29. Wu, H. T.; Lee, M. J.; Lin, H. M., Supercritical fluid-assisted dispersion of ultra-fine pigment red 177 particles with blended dispersants. J Supercrit Fluid 2006, 39 (1), 127-134. 30. Bell, P.; Amand, M.; Fan, X.; Enick, R.; Roberts, C., S表 dispersions of silver nanoparticles in carbon dioxide with fluorine-free ligands. Langmuir 2005, 21 (25), 11608-11613. 31. Anand, M.; Bell, P.; Fan, X.; Enick, R.; Roberts, C., Synthesis and steric stabilization of silver nanoparticles in neat carbon dioxide solvent using fluorine-free compounds. The journal of physical chemistry. B 2006, 110 (30), 14693-14701. 32. Kordikowski, A.; Schenk, A.; VanNielen, R.; Peters, C., Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. The Journal of supercritical fluids 1995, 8 (3), 205-216. 33. Kazarian, S.; Vincent, M.; Bright, F.; Liotta, C.; Eckert, C., Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 1996, 118 (7), 1729-1736. 34. McLeod, M. C.; Anand, M.; Kitchens, C. L.; Roberts, C. B., Precise and rapid size selection and targeted deposition of nanoparticle populations using CO2 gas expanded liquids. Nano Lett 2005, 5 (3), 461-465. 35. McLeod, M. C.; Kitchens, C. L.; Roberts, C. B., CO2-expanded liquid deposition of ligand-stabilized nanoparticles as uniform, wide-area nanoparticle films. Langmuir 2005, 21 (6), 2414-2418. 第六章 1. Alivisatos, A., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271 (5251), 933-937. 2. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281 (5385), 2013-2016. 3. Sun, Y. G.; Xia, Y. N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298 (5601), 2176-2179. 4. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; ElSayed, M. A., Shape-controlled synthesis of colloidal platinum nanoparticles. Science 1996, 272 (5270), 1924-1926. 5. Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A., Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297 (5586), 1536-1540. 6. Crooks, R. M.; Zhao, M. Q.; Sun, L.; Chechik, V.; Yeung, L. K., Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Accounts Chem Res 2001, 34 (3), 181-190. 7. Kamat, P. V., Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 2002, 106 (32), 7729-7744. 8. Murphy, C. J.; San, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J Phys Chem B 2005, 109 (29), 13857-13870. 9. Voisin, C.; Del Fatti, N.; Christofilos, D.; Vallee, F., Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J Phys Chem B 2001, 105 (12), 2264-2280. 10. Zhang, J. Z., Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Accounts Chem Res 1997, 30 (10), 423-429. 11. Panacek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizurova, N.; Sharma, V. K.; Nevecna, T.; Zboril, R., Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006, 110 (33), 16248-16253. 12. Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D., Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18 (22), -. 13. Chimentao, R. J.; Kirm, I.; Medina, F.; Rodriguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J. E., Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Chem Commun 2004, (7), 846-847. 14. Jiang, Z. J.; Liu, C. Y.; Sun, L. W., Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 2005, 109 (5), 1730-1735. 15. Patel, A. C.; Li, S. X.; Wang, C.; Zhang, W. J.; Wei, Y., Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 2007, 19 (6), 1231-1238. 16. Zou, S. L.; Schatz, G. C., Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters 2005, 403 (1-3), 62-67. 17. Zheng, J. W.; Li, X. W.; Gu, R. N.; Lu, T. H., Comparison of the surface properties of the assembled silver nanoparticle electrode and roughened silver electrode. J Phys Chem B 2002, 106 (5), 1019-1023. 18. Haes, A. J.; Van Duyne, R. P., A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 2002, 124 (35), 10596-10604. 19. McFarland, A. D.; Van Duyne, R. P., Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 2003, 3 (8), 1057-1062. 20. Evanoff, D. D.; Chumanov, G., Synthesis and optical properties of silver nanoparticles and arrays. Chemphyschem 2005, 6 (7), 1221-1231. 21. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. Journal of the Chemical Society-Chemical Communications 1994, (7), 801-802. 22. Sarathy, K. V.; Raina, G.; Yadav, R. T.; Kulkarni, G. U.; Rao, C. N. R., Thiol-derivatized nanocrystalline arrays of gold, silver, and platinum. Journal of Physical Chemistry B 1997, 101 (48), 9876-9880. 23. Yamamoto, M.; Nakamoto, M., Novel preparation of monodispersed silver nanoparticles via amine adducts derived from insoluble silver myristate in tertiary alkylamine. Journal of materials chemistry 2003, 13 (9), 2064-2065. 24. Yamamoto, M.; Kashiwagi, Y.; Nakamoto, M., Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. Langmuir 2006, 22 (20), 8581-8586. 25. Kashiwagi, Y.; Yamamoto, M.; Nakamoto, M., Facile size-regulated synthesis of silver nanoparticles by controlled thermolysis of silver alkylcarboxylates in the presence of alkylamines with different chain lengths. J Colloid Interf Sci 2006, 300 (1), 169-175. 26. Shen, C. M.; Hui, C.; Yang, T. Z.; Xiao, C. W.; Tian, J. F.; Bao, L. H.; Chen, S. T.; Ding, H.; Gao, H. J., Monodisperse Noble-Metal Nanoparticles and Their Surface Enhanced Raman Scattering Properties. Chem Mater 2008, 20 (22), 6939-6944. 27. Chen, M.; Feng, Y. G.; Wang, X.; Li, T. C.; Zhang, J. Y.; Qian, D. J., Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization. Langmuir 2007, 23 (10), 5296-5304. 28. Bunge, S. D.; Boyle, T. J.; Headley, T. J., Synthesis of coinage-metal nanoparticles from mesityl precursors. Nano Lett 2003, 3 (7), 901-905. 29. Lu, X. M.; Tnan, H. Y.; Korgel, B. A.; Xia, Y. N., Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chem-Eur J 2008, 14 (5), 1584-1591. 30. Hiramatsu, H.; Osterloh, F. E., A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 2004, 16 (13), 2509-2511. 31. Jessop, P. G., Leitner W., Chemical synthesis using supercritical fluids. Wiley-VCH: New York, 1999; p 10. 32. Ji, M.; Chen, X. Y.; Wai, C. M.; Fulton, J. L., Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion. J Am Chem Soc 1999, 121 (11), 2631-2632. 33. Ohde, H.; Hunt, F.; Wai, C. M., Synthesis of silver and copper nanoparticles in a water-in-supercritical-carbon dioxide microemulsion. Chem Mater 2001, 13 (11), 4130-4135. 34. McLeod, M. C.; McHenry, R. S.; Beckman, E. J.; Roberts, C. B., Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in perfluoropolyether/CO2 reverse micelle systems. J Phys Chem B 2003, 107 (12), 2693-2700. 35. Sun, Y. P.; Atorngitjawat, P.; Meziani, M. J., Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solution. Langmuir 2001, 17 (19), 5707-5710. 36. Meziani, M. J.; Pathak, P.; Beacham, F.; Allard, L. F.; Sun, Y. P., Nanoparticle formation in rapid expansion of water-in-supercritical carbon dioxide microemulsion into liquid solution. J Supercrit Fluid 2005, 34 (1), 91-97. 37. Shah, P. S.; Husain, S.; Johnston, K. P.; Korgel, B. A., Role of steric stabilization on the arrested growth of silver nanocrystals in supercritical carbon dioxide. J Phys Chem B 2002, 106 (47), 12178-12185. 38. Shah, P. S.; Husain, S.; Johnston, K. P.; Korgel, B. A., Nanocrystal arrested precipitation in supercritical carbon dioxide. J Phys Chem B 2001, 105 (39), 9433-9440. 39. Jessop, P. G.; Subramaniam, B., Gas-expanded liquids. Chemical Reviews 2007, 107 (6), 2666-2694. 40. Akien, G.; Poliakoff, M., A critical look at reactions in class I and II gas-expanded liquids using CO2 and other gases. Green chemistry 2009, 11 (8), 1083-1100. 41. Kordikowski, A.; Schenk, A.; VanNielen, R.; Peters, C., Volume expansions and vapor-liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. The Journal of supercritical fluids 1995, 8 (3), 205-216. 42. Yin, J.; Tan, C., Solubility of hydrogen in toluene for the ternary system H2+CO2+ toluene from 305 to 343 K and 1.2 to 10.5 MPa. Fluid phase equilibria 2006, 242 (2), 111-117. 43. Lin, I.; Tan, C., Diffusion of benzonitrile in CO2-expanded ethanol. Journal of chemical & engineering data 2008, 53 (8), 1886-1891. 44. Lin, I.; Tan, C., Measurement of diffusion coefficients of p-chloronitrobenzene in CO2-expanded methanol. The Journal of supercritical fluids 2008, 46 (2), 112-117. 45. Bogel-Lukasik, E.; Fonseca, I.; Bogel-Lukasik, R.; Tarasenko, Y. A.; da Ponte, M. N.; Paiva, A.; Brunner, G., Phase equilibrium-driven selective hydrogenation of limonene in high-pressure carbon dioxide. Green chemistry 2007, 9 (5), 427-430. 46. McLeod, M. C.; Anand, M.; Kitchens, C. L.; Roberts, C. B., Precise and rapid size selection and targeted deposition of nanoparticle populations using CO2 gas expanded liquids. Nano Lett 2005, 5 (3), 461-465. 47. McLeod, M. C.; Kitchens, C. L.; Roberts, C. B., CO2-expanded liquid deposition of ligand-stabilized nanoparticles as uniform, wide-area nanoparticle films. Langmuir 2005, 21 (6), 2414-2418. 48. Abe, K.; Hanada, T.; Yoshida, Y.; Tanigaki, N.; Takiguchi, H.; Nagasawa, H.; Nakamoto, M.; Yamaguchi, T.; Yase, K., Two-dimensional array of silver nanoparticles. Thin Solid Films 1998, 329, 524-527. 49. Lee, S. J.; Han, S. W.; Choi, H. J.; Kim, K., Structure and thermal behavior of a layered silver carboxylate. J Phys Chem B 2002, 106 (11), 2892-2900. 50. Yang, N. J.; Aoki, K.; Nagasawa, H., Thermal metallization of silver stearate-coated nanoparticles owing to the destruction of the shell structure. J Phys Chem B 2004, 108 (39), 15027-15032. 51. Jacobson, C. A.; Holmes, A., Solubility data for various salts of lauric, myristic, palmitic, and stearic acids. J Biol Chem 1916, 25 (1), 29-53. 52. Malik, W. U.; Jain, A. K.; Jhamb, O. P., Solutions of soaps in organic solvents. J Chem Soc A 1971, (10), 1514. 53. Tolochko, B.; Chernov, S.; Nikitenko, S.; Whitcomb, D., EXAFS determination of the structure of silver stearate, [Ag(O2C(CH2)(16)CH3](2), and the effect of temperature on the silver coordination sphere. Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment 1998, 405 (2-3), 428-434. 54. Binnemans, K.; Van Deun, R.; Thijs, B.; Vanwelkenhuysen, I.; Geuens, I., Structure and mesomorphism of silver alkanoates. Chem Mater 2004, 16 (10), 2021-2027. 55. Lin, B.; Dong, J.; Whitcomb, D.; McCormick, A.; Davis, H., Crystallization of silver stearate from sodium stearate dispersions. Langmuir 2004, 20 (21), 9069-9074. 56. Dong, J.; Whitcomb, D.; McCormick, A.; Davis, H., Crystallization of silver carboxylates from sodium carboxylate mixtures. Langmuir 2007, 23 (15), 7963-7971. 57. Barrufet, M. A.; Salem, S. K. E.; Tantawy, M.; IglesiasSilva, G. A., Liquid viscosities of carbon dioxide plus hydrocarbons from 310 K to 403 K. J Chem Eng Data 1996, 41 (3), 436-439. 58. Li, H. P.; Maroncelli, M., Solvation and solvatochromism in CO2-expanded liquids. 1. Simulations of the solvent systems CO2+cyclohexane, acetonitrile, and methanol. J Phys Chem B 2006, 110 (42), 21189-21197. 59. Xie, Z. Z.; Snavely, W. K.; Scurto, A. M.; Subramaniam, B., Solubilities of CO and H2 in neat and CO2-expanded hydroformylation reaction mixtures containing 1-octene and nonanal up to 353.15 K and 9 MPa. J Chem Eng Data 2009, 54 (5), 1633-1642. 60. Bezanehtak, K.; Dehghani, F.; Foster, N. R., Vapor-liquid equilibrium for the carbon dioxide plus hydrogen plus methanol ternary system. J Chem Eng Data 2004, 49 (3), 430-434. 第七章 1. Koch, D. F. A.; Mcintyre, R. J., Application of Reflectance Spectroscopy to a Study of Anodic-Oxidation of Cuprous Sulfide. J Electroanal Chem 1976, 71 (3), 285-296. 2. Larsen, T. H.; Sigman, M.; Ghezelbash, A.; Doty, R. C.; Korgel, B. A., Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. J Am Chem Soc 2003, 125 (19), 5638-5639. 3. Sigman, M. B.; Ghezelbash, A.; Hanrath, T.; Saunders, A. E.; Lee, F.; Korgel, B. A., Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J Am Chem Soc 2003, 125 (51), 16050-16057. 4. Ghezelbash, A.; Sigman, M. B.; Korgel, B. A., Solventless synthesis of nickel sulfide nanorods and triangular nanoprisms. Nano Lett 2004, 4 (4), 537-542. 5. Chen, Y. B.; Chen, L.; Wu, L. M., The Structure-Controlling Solventless Synthesis and Optical Properties of Uniform Cu2S Nanodisks. Chem-Eur J 2008, 14 (35), 11069-11075. 6. Chen, L.; Chen, Y. B.; Wu, L. M., Synthesis of uniform CU2S nanowires from copper-thiolate polymer precursors by a solventless thermolytic method. J Am Chem Soc 2004, 126 (50), 16334-16335. 7. Mott, D.; Yin, J.; Engelhard, M.; Loukrakpam, R.; Chang, P.; Miller, G.; Bae, I. T.; Das, N. C.; Wang, C. M.; Luo, J.; Zhong, C. J., From Ultrafine Thiolate-Capped Copper Nanoclusters toward Copper Sulfide Nanodiscs: A Thermally Activated Evolution Route. Chem Mater 2010, 22 (1), 261-271. 8. Sun, J. W.; Buhro, W. E., The use of single-source precursors for the solution-liquid-solid growth of metal sulfide semiconductor nanowires. Angew Chem Int Edit 2008, 47 (17), 3215-3218. 9. Tian, L.; Yep, L. Y.; Ong, T. T.; Yi, J. B.; Ding, J.; Vittal, J. J., Synthesis of NiS and MnS Nanocrystals from the Molecular Precursors (TMEDA)M(SC{O}C6H5)(2) (M = Ni, Mn). Cryst Growth Des 2009, 9 (1), 352-357. 10. Beal, J. H. L.; Etchegoin, P. G.; Tilley, R. D., Transition Metal Polysulfide Complexes as Single-Source Precursors for Metal Sulfide Nanocrystals. J Phys Chem C 2010, 114 (9), 3817-3821. 11. Du, X. S.; Yu, Z. Z.; Dasari, A.; Ma, J.; Meng, Y. Z.; Mai, Y. W., Facile synthesis and assembly of Cu2S nanodisks to corncoblike nanostructures. Chem Mater 2006, 18 (22), 5156-5158. 12. Du, X. S.; Mo, M. S.; Zheng, R. K.; Lim, S. H.; Meng, Y. Z.; Mai, Y. W., Shape-controlled synthesis and assembly of copper sulfide nanoparticles. Cryst Growth Des 2008, 8 (6), 2032-2035. 13. Lou, W. J.; Chen, M.; Wang, X. B.; Liu, W. M., Size control of monodisperse copper sulfide faceted nanocrystals and triangular nanoplates. J Phys Chem C 2007, 111 (27), 9658-9663. 14. Pradhan, N.; Efrima, S., Single-precursor, one-pot versatile synthesis under near ambient conditions of tunable, single and dual band fluorescing metal sulfide nanoparticles. J Am Chem Soc 2003, 125 (8), 2050-2051. 15. Pradhan, N.; Katz, B.; Efrima, S., Synthesis of high-quality metal sulfide nanoparticles from alkyl xanthate single precursors in alkylamine solvents. J Phys Chem B 2003, 107 (50), 13843-13854. 16. Lim, W. P.; Wong, C. T.; Ang, S. L.; Low, H. Y.; Chin, W. S., Phase-selective synthesis of copper sulfide nanocrystals. Chem Mater 2006, 18 (26), 6170-6177. 17. Choi, S. H.; An, K.; Kim, E. G.; Yu, J. H.; Kim, J. H.; Hyeon, T., Simple and Generalized Synthesis of Semiconducting Metal Sulfide Nanocrystals. Adv Funct Mater 2009, 19 (10), 1645-1649. 18. Jun, S.; Jang, E. J.; Chung, Y. S., Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures. Nanotechnology 2006, 17 (19), 4806-4810. 19. Zhuang, Z. B.; Peng, Q.; Zhang, B.; Li, Y. D., Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice. J Am Chem Soc 2008, 130 (32), 10482. 20. Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F. X.; Zhang, J. Z.; Hyeon, T., Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J Am Chem Soc 2003, 125 (36), 11100-11105. 21. Zhang, H.; Zhang, Y. Q.; Yu, J. X.; Yang, D. R., Phase-selective synthesis and self-assembly of monodisperse copper sulfide nanocrystals. J Phys Chem C 2008, 112 (35), 13390-13394. 22. Zhang, H. T.; Wu, G.; Chen, X. H., Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates. Langmuir 2005, 21 (10), 4281-4282. 23. Du, W. M.; Qian, X. F.; Ma, X. D.; Gong, Q.; Cao, H. L.; Yin, H., Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chem-Eur J 2007, 13 (11), 3241-3247. 24. Roy, P.; Mondal, K.; Srivastava, S. K., Synthesis of twinned CuS nanorods by a simple wet chemical method. Cryst Growth Des 2008, 8 (5), 1530-1534. 25. Wu, Y.; Wadia, C.; Ma, W. L.; Sadtler, B.; Alivisatos, A. P., Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett 2008, 8 (8), 2551-2555. 26. Liu, Z. P.; Liang, J. B.; Xu, D.; Lu, J.; Qian, Y. T., A facile chemical route to semiconductor metal sulfide nanocrystal superlattices{. Chem Commun 2004, (23), 2724-2725. 27. Jun, Y. W.; Lee, S. M.; Kang, N. J.; Cheon, J., Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J Am Chem Soc 2001, 123 (21), 5150-5151. 28. Ghezelbash, A.; Koo, B.; Korgel, B. A., Self-assembled stripe patterns of CdS nanorods. Nano Lett 2006, 6 (8), 1832-1836. 29. Nann, T.; Schneider, J., Origin of permanent electric dipole moments in wurtzite nanocrystals. Chemical Physics Letters 2004, 384 (1-3), 150-152. 30. Lu, X. M.; Yavuz, M. S.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. N., Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J Am Chem Soc 2008, 130 (28), 8900. 31. Tanaka, A.; Kamikubo, H.; Doi, Y.; Hinatsu, Y.; Kataoka, M.; Kawai, T.; Hasegawa, Y., Self-Assembly and Enhanced Magnetic Properties of Three-Dimensional Superlattice Structures Composed of Cube-Shaped EuS Nanocrystals. Chem Mater 2010, 22 (5), 1776-1781. 32. Ghezelbash, A.; Korgel, B. A., Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir 2005, 21 (21), 9451-9456.
|