跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/13 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳政鴻
研究生(外文):Jheng-Hong Wu
論文名稱:不同環境壓力條件下生物除磷系統溶解性微生物產物之生成及其對除磷效能之影響
論文名稱(外文):Production of soluble microbial products and their impact on biological phosphorus removal systems operated under different environmental stress conditions.
指導教授:張維欽張維欽引用關係
指導教授(外文):Wei-Chin Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:105
中文關鍵詞:溶解性微生物產物(SMPs)加強生物除磷系統(EBPR)環境壓力水力停留時間(HRT)磷蓄積菌(PAOs)
外文關鍵詞:phosphorus removal (EBPR)Environmental stressEnhanced biologicalHydraulic retention time (HRT)Polyphosphate accumulation organisms (PAOs)Soluble microbial products (SMPs)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
廢水生物處理系統中,微生物會於分解有機物過程產生溶解性微生物產物(Soluble Microbial Products, SMPs)。SMPs為微生物自身衰減或代謝基質所產生之溶解性有機物之總稱,SMPs組成種類複雜且生物分解性較進流基質為差。過往研究顯示廢水生物處理系統放流水中殘存之溶解性有機物,大部分均由SMPs所組成。SMPs本身具生物毒性,於活性污泥系統中會抑制硝化作用與醋酸攝取能力、降低微生物活性,並對污泥膠凝性與沉降性均具負面影響。
目前關於SMPs對生物處理系統之影響,大多針對除碳與硝化進行探討,但亦有研究顯示SMPs對生物除磷系統(EBPR)操作性可能同樣具有影響。為進一步確認SMPs影響系統除磷原因,本研究以兩座不同SRT(5天與15天)操作之A/O活性污泥模廠,藉由延長系統水力停留時間(HRT)來累積SMPs,並利用其進行厭氧與好氧批次實驗。藉以探討SMPs對PAOs厭氧釋磷及好氧攝磷之影響;並比較不同SRT系統產生之SMPs對除磷效能影響之差異。
實驗結果顯示,延長模廠水力停留時間,會使SMPs隨著時間增加而累積並導致除磷功能喪失。批次實驗進一步證實SMPs存在於生物除磷系統中,並不影響PAOs之厭氧釋磷功能,但卻直接抑制PAOs在好氧段之攝磷能力,且隨著SMPs濃度增加,抑制效應愈明顯。批次實驗結果亦顯示,不同SMPs濃度下PAOs對好氧PHAs利用均極為相似,說明SMPs影響PAOs好氧攝磷,並非受到細胞增殖不足所致,而是SMPs能直接阻斷PAOs攝磷路徑。經進一步計算不同SRT下SMPs對好氧攝磷抑制動力顯示,SRT 15天所累積之SMPs對PAOs好氧攝磷抑制性高於SRT 5天。
研究指出施加不同環境壓力條件於厭氧處理系統中,會增加處理系統放流水中SMPs濃度,但目前對於生物除磷系統中SMPs生成及其對系統操作性能影響之相關研究成果甚少。因此,本研究嘗試以兩座A/O活性污泥模廠,透過施加不同環境壓力(營養源缺乏與添加毒性物質)於生物除磷系統中,以探討系統之SMPs生成及其對除磷效能之影響。
實驗結果顯示,營養源缺乏會造成SMPs產量增加,且影響PAOs細胞代謝行為,導致系統除磷除碳功能喪失;當移除外在環境壓力(回復添加營養源),仍無法回復除磷功能,且變成以GAOs族群為優勢菌群。而毒性物質存在亦會使EBPR之SMPs產量增加,其增加原因可能是由細胞衰退產物或是胞外聚合物水解所貢獻,且SMPs濃度會與毒性物質衝擊之程度成正比。此外,由添加重金屬(Zn2+、Cr6+)批次實驗發現,重金屬存在會直接影響PAOs厭氧段釋磷量,導致基質攝取率與PAHs生成量下降;且影響好氧段胞內PAHs利用,使細胞增殖量不足進而造成除磷效果惡化。進一步探討重金屬對厭氧釋磷與好氧攝磷抑制動力顯示,Zn2+對SRT 5天生物污泥有較高的抑制性;且Zn2+對PAOs影響較Cr6+為高。
Microorganisms in biological treatment system biodegrades organic material and also generates soluble microbial products (SMPs). SMPs may be produced directly from substrate metabolism or from biomass decay. SMPs contain a variety of organic matter and their biodegradability is poor than influent substrates. The past researches showed that the remaining soluble organic matter of the effluent was actually SMPs. In addition, SMPs exhibited biological toxicity which inhibited acetate uptake and nitrification capacity, reduced microbial activity and affected the flocculating and settling properties of sludge in biological wastewater treatment.
SMPs is mostly discussed to influence on carbon removal and nitrification of the biological treatment system, but seldom has report the inhibitory effect of SMPs on enhanced biological phosphorus removal (EBPR). In order to confirm the reasons why SMPs influence phosphorus removal system, we operated two anaerobic–aerobic activated sludge reactors on different SRT (5 day and 15 day) and accumulate SMPs in their supernatant by lengthen their hydraulic retention time (HRT). Then anaerobic and aerobic batch experiments were conducted by using the supernatant from each reactor. Finally, this research investigate the effect of SMPs on anaerobic phosphorus release and aerobic phosphorus uptake of PAOs, and compare the effect of SMPs on the phosphorus removal efficiency from different SRT system.
Experimental results showed that lengthens HRT can increase SMPs and lead to reduce treatment efficiency of biological phosphorus removal system. Batch experiments further confirmed that the existence of SMPs in the biological phosphorus removal system doesn’t affect the function of anaerobic phosphorus release, but direct inhibit the capacity of aerobic phosphate uptake. Batch experimental results also showed that are very similar under different concentrations of SMPs to the use of PHAs by PAOs. This illustrated SMPs can directly block the path of PAOs phosphate uptake. The further calculation of inhibition kinetics of SMPs on aerobic phosphorus uptake display that inhibition intensity of aerobic phosphate uptake from SRT 15 day is higher than that from SRT 5 day.
The past research indicated that different environmental stress conditions imposed on the anaerobic treatment system can increase the concentration of effluents in SMPs. This study tries to operate two anaerobic–aerobic activated sludge reactors, to explore the production of SMPs and their impact on phosphorus removal by imposing different environmental stress (nutrient deficiency and presence of the toxic compounds) on biological phosphorus removal system.
Experimental results showed that the nutrient deficiency will result in increased of SMPs and affect PAOs cell metabolism, leading to the loss of function to removal carbon and phosphorus. When removing the external environment stress (nutrient added back), the system still unable to respond to phosphorus removal capabilities, and population of GAOs become the dominant. The presences of toxic substances will also increase the production of SMPs in EBPR, the increase may be due to the biomass decay or hydrolysis of extracellular polymeric substrates. In addition, by adding heavy metals (Zn2+, Cr6+) batch experiments showed that heavy metals will directly affect anaerobic phosphorus release of PAOs, resulting in decrease of substrate uptake rate and PAHs generation, thereby causing the deterioration of phosphorus removal. The further calculation of the inhibition kinetics of heavy metals on anaerobic phosphorus release and aerobic phosphorus uptake display that Zn2+ has a higher inhibition on the SRT 5 day biological sludge and Zn2+ effects of PAOs is higher than Cr6+.
摘要 I
英文摘要 III
目錄 VII
表目錄 X
圖目錄 XI
第一章 前言 1
1.1研究源起 1
1.2研究目的與內容 2
第二章 文獻回顧 4
2.1溶解性微生物產物(SMPS)之意義 4
2.2 溶解性微生物產物之特性 7
2.2.1 SMPS之分子量分布 7
2.2.2 SMPS之生物降解性 7
2.2.3 SMPS對於金屬之螯合性 7
2.3 影響溶解性微生物產物生成之條件 8
2.3.1 進流基質種類與濃度對於SMPS生成之影響 8
2.3.2 SRT、微生物濃度與有機負荷對於SMPS生成之影響 8
2.3.3 溫度對於SMPS生成之影響 10
2.3.4 環境壓力條件對於SMPS生成之影響 10
2.4 加強生物除磷系統 11
2.4.1加強生物除磷系統(EBPR)之原理 11
2.4.2 肝醣蓄積菌之發現及其特性 12
2.4.3 磷蓄積菌與肝醣蓄積菌之型態差異及相互關係 13
2.4.4 以醋酸為單一碳源馴養之加強生物除磷系統代謝模式 14
2.5 重金屬對生物處理之影響 20
第三章 實驗設備與方法 21
3.1 研究架構與流程 21
3.2 連續操作之厭氧好氧活性污泥植種模廠 25
3.2.1 SRT 5及15天植種污泥模廠 25
3.2.2 SRT 5天與15天累積SMPS模廠 27
3.2.3 SRT 15天之SBR模廠 29
3.2.3.1 營養源缺乏模廠 29
3.2.3.2 添加毒性物質(鋅)模廠 30
3.3 批次實驗 30
3.3.1 SMPS抑制釋攝磷批次實驗 30
3.3.2 不同濃度重金屬鋅(ZN2+)與鉻(CR6+)批次實驗 32
3.4 分析方法與設備 34
3.4.1 分析方法 34
3.4.2 分析設備 35
第四章 結果與討論 36
4.1 植種污泥模廠穩定期間水質數據 36
4.1.1 SRT 5天植種污泥模廠 36
4.1.2 SRT 15天植種污泥模廠 36
4.2 不同SRT操作下溶解性微生物對除磷效能之影響 38
4.2.1 累積SMPS模廠操作結果 38
4.2.2 SMPS抑制厭氧釋磷批次實驗 40
4.2.3 SMPS抑制好氧攝磷批次實驗 41
4.2.4 綜合討論 45
4.2.4.1 SMPS抑制好氧攝磷之原因 45
4.2.4.2 不同SRT生成之SMPS對好氧攝磷抑制動力比較 46
4.3 不同環境壓力條件下SMPS之生成及其對除磷效應之影響 48
4.3.1 SRT 15天之SBR模廠 48
4.3.2 營養源缺乏模廠 49
4.3.2.1 營養源缺乏期間之操作結果 49
4.3.2.2 回復添加營養源期間之操作結果 54
4.3.3 添加毒性物質(鋅)模廠操作結果 59
4.3.4 不同濃度鋅批次實驗 67
4.3.4.1 SRT 5天不同濃度鋅批次實驗結果 67
4.3.4.2 SRT 15天不同濃度鋅批次實驗結果 73
4.3.5 不同濃度鉻批次實驗 80
4.4 綜合討論 85
4.4.1 厭氧釋磷抑制動力之比較 85
4.4.2 好氧攝磷抑制動力之比較 88
第五章 結論與建議 91
5.1 結論 91
5.1.1 不同SRT操作下SMPS對生物除磷效能之影響 91
5.1.2 不同環境壓力下SMPS生成及其對除磷效能之影響 91
5.1.2.1 營養源缺乏對EBPR系統除磷效能之影響 91
5.1.2.1 毒性物質對EBPR系統除磷效能之影響 92
5.2 建議 92
參考文獻 93
附錄A 營養源缺乏實驗結果 99
附錄B 添加毒性物質實驗結果 102
1.Namkung E. and Rittmann B. E., 1986, “Soluble microbial products (SMP) formation kinetics by biofilms.” Water Res. 20(6), 795-806.
2.Rittmann, B. E., Bae, W., Namkung, E. and Lu, C.-J., 1987, “A critical evaluation of microbial product formation in biological processes.” Water Sci. Technol. 19, 517-528.
3.Hejzlar J. and Chudoba J., 1986, “Microbial polymers in the aquatic environment: I. Production by activated sludge microorganisms under different conditions.” Water Res. 20(10), 1209-1216.
4.Noguera D. R., Araki N. and Rittmann B. E., 1994, “Soluble microbial products (SMP) in anaerobic chemostats.” Biotech. Bioeng. 44, 1040-1047.
5.Kuo W. C. and Parkin G. F., 1996, “Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties.” Water Res. 30(4), 915-922.
6.Kuo W. C., Sneve M. A. and Parkin G. F., 1996, “Formation of soluble microbial products during anaerobic treatment.” Water Environ. Res. 68, 279-285.
7.Laspidou, C. S., Rittmann, B. E., 2002, “A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass.” Water Res. 36, 2711-2720.
8.Barker, D. J., Stuckey, D. C., 1999, “A review of soluble microbial products (SMP) in wastewater treatment systems.” Water Res. 33(14), 3063–3082.
9.Barker D. J., Mannucchi G. A., Salvi S. M. L. and Stuckey D. C., 1999, “Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewatertreatment effluents.” Water Res. 33(11), 2499-2510.
10.Callander, I. J. & Barford, J. P., 1983a, “Precipitation, chelation, and the availability of metals as nutrients inanaerobic digestion. I. Methodology.” Biotechnol.Bioengr. 25, 1947-1958.
11.Callander, I. J. & Barford, J. P., 1983b, “Precipitation, chelation, and the availability of metals as nutrients inanaerobic digestion. II. Applications.” Biotechnol.Bioengr. 25, 1959-1970.
12.Hao, O. J. and Lao, A. O., 1988, “Kinetics of microbial by-product formation in chemostat pure cultures.” J.Environ. Eng. Div. ASCE 114(5), 1097-1115.
13.Boero, V. J., Eckenfelder, Jr. W. W. and Bowers A. R., 1991, “Soluble microbial product formation in biological systems.” Water Sci. Technol. 23, 1067-1076.
14.Baskir C. I. and Hansford G. S., 1980, “Product formation in the continuous culture of microbial populations grown on carbohydrates.” Biotech. Bioeng. XXII, 1857-1875.
15.Pribyl M., Tucek F., Wilderer P. A. and Wanner J., 1997, “Amount and nature of soluble refractory organics produced by activated sludge micro-organisms in sequencing batch and continuous flow reactors.” Water Sci. Technol. 35(1), 27-34.
16.Chudoba J., 1967, “Residual organic matter in activated sludge process effluents. I. Degradation of saccharides, fatty acids and amino acids under batch conditions.” Scientific Papers of the Institute of Chemical Technology (Czech). Technol. Water F12, 39-75.
17.Sollfrank, U., Kappeler, J. and Gujer, W., 1992, “Temperature effects on wastewater characterization and the release of soluble inert organic material.” Water Sci. Technol. 25(6), 33-41.
18.Nachaiyasit, S. and Stuckey, D. C., 1997, “Effect of low temperatures on the performance of an anaerobic baffled reactor (ABR).” J. Chem. Tech. Biotech. 69, 276-284.
19.Schiener, P., Nachaiyasit, S. and Stuckey, D. C. (1998) Production of soluble microbial products (SMP) in an anaerobic ba.ed reactor: composition, biodegradability and the effect of process parameters. Environ. Technol.19, 391-400.
20.Aquino, S. F. and Stuckey, D. C., 2003, “The production of soluble microbial products in anaerobic chemostats under nutrient deficiency.” ASCE J Environ Eng. 129(11), 1007–14.
21.Aquino, S. F. and Stuckey, D. C., 2004, “The effect of organic and hydraulic shock loads on the production of soluble microbial products in anaerobic digesters.” Water Environ Res. 76, 2628–2636.
22.Smolders, G. L. F., van, d. J., van Loosdrecht, M. C. M. and Heijnen J. J., 1995, “Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and H influence.”Biotechnol. Bioeng.43, 461-470.
23.Cech, J. S. and Hartman, P., 1990, “Glucose induced break-down of enhanced biological phosphate removal.”Environ. Tech.11, 651-656.
24.Liu WT, Mino T, Nkamura K, Matsuo T., 1994,“Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in an anaerobic- aerobic activated sludge with minimized polyphosphate content. ” Ferment Bioeng.77, 535-40.
25.Brdjanovic, D., van Loosdrecht, M. C. M., Hooijmans, C. M., Mion, T., Alaerts, G. J. and Jeijnen, J. J., 1998c, “Bioassay for glycogen determination in biological phosphorus removal systems.” Wat. Sci. Tech. 37, 541-547.
26.Mino, T., van Loosdrecht, M. C. M. and Hejjnen, J. J., 1998, “Microbiology and biochemistry of the enhanced biological phosphate removal process. Wat. Res. 32(11), 3193-3207.
27.Comeau, Y., Hall, K. J., Hancock, R. E. W. and Oldham, W. K., 1986, “Biochemical model enhanced biological phosphorus removal.”Wat. Res. 20(12), 1511-1521.
28.Mino, T., Tsuzuki, Y. and Matsuo, T., 1987, “Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process. Proc.IAWPRC Int. Conf. on Biological Phosphate Removal from Wastewaters.”Rome, Adv. Water Pollut. Cont., ed., R.Ramadori, 27-38. Pergamon Press.
29.Smolders, G. L. F., van, d. J., van Loosdrecht, M. C. M. and Heijnen J. J., 1994, “Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and H influence.”Biotechnol. Bioeng.43, 461-470.
30.Van, L M. C. M. and Heijnen, J. J., 1997, “Importance of bacterial storage polymers in bioprocesses.”Water Sci. Tech. 35(1), 41-47.
31.Pereira, H., Lemos, P. C., Reis, M. A. M., Crespo, J. P. S. G., Carrondo, M. J. T. and Santos, H., 1996, “Model for carbon metabolism in biological phosphorus removal process based on in vivo C13-NMR labeling experiments.”Wat. Res., 30(9), 2128-2138.
32.Louie, T.M., Mah, T.J., Oldham, W. and Ramey, W.D., 2000, “Use of metabolic inhibitors and gas chromatography / mass spectrometry to study poly-β-hydroxyalkanoates metabolism involving cryptic nutrients in enhanced biological phosphorus removal systems.”Wat. Res. 34(5), 1507- 1514.
33.Filipe, C.D.M and Daigger, G.T., 1998, “Development of a revised metabolic model for the growth of phosphorus-accumulating organisms,” Water Env. Res. 70, 67-79.
34.Maurer, M., Gujer, W., Hany, R. and Bachman, S., 1997, “Intracellular carbon flow in phosphorus accumulating organisms from activated sludge systems.” Wat. Res. 31(4) 907-917.
35.Majone M, Dircks K, Beun JJ., 1999, “Aerobic storge under dynamic conditions in activated sludge processes.” The state of the art. Water Sci Technol. 39 (1):61-73.
36.Stasinakis A. S., Thomaisis N. S., Mamais D., Papanikolaou E. C., Tsakon A., Lekkas T. D., 2003 “Effects of chromium (VI) addition on the activated sludge process.” Water Res .37:2140-2148.
37.Cabrero A., Fernandez S., Mirada F., Garcia J., 1998, “Effects of copper and zinc on the activated sludge baxteria growth kinetics.” Water Res .32(5):1355-1362.
38.Barth E. et. al., 1965, “Summary Report on the Effects of Heavy Metals on the Biological Treatment Process.” J. WPCF. 37(1): 86-96.
39.Madoni P., Davolf D., Gorbi G., Vescovi L., 1996, “Toxic effect of heavy metals on the activated sludge protozoan community” Water Res. 30(1):135-141.
40.Smolders, G. L. F., van, d. J., van Loosdrecht, M. C. M. and Heijnen J. J., 1994, “Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and H influence.”Biotechnol. Bioeng.43, 461-470.
41.Brand H, Gross RA, Lenz RW, Fuller RC., 1988, “Pseudomonas oleovorans as a Source of Poly (β-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters.” App Environ Microbiol. 54:1977-1982.
42.Comeau Y, Hall KJ, Oldham WK., 1988, “Determination of Poly-β-hydroxybutyrate and Poly-β-hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography.” Appl Environ Microbiol. 54: 2325-2327.
43.Burton K., 1956, “A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid.”Biochem J. 62:315-323.
44.Zhang X., Bishop P., Kinkle B., 1999, “Compariso n of extraction methods for quantifying extracellular polymers in biofilms.” Wat Sci Tech. 39:211–218.
45.Jens Meinhold, Eva Arnold and Steven ISAACS., 1999, “Effect of nitrite on anoxic phosphate uptakein biological phosphorus removal activated sludge.” Wat. Res. 33 (8):1871-1883.
46. Rickard L. F. and McClintock S. A., 1992, “Potassium and Magnesium requirements for enhanced biological phosphorus removal from waster-water.” Water Sci. Technol. 26(9-11), 2203-2206
47.Fukushi K, Chang D, Ghosh S., 1996, “Enhanced heavy metal uptake by activated sludge cultures grown in the presence of biopolymer stimulators.”Wat Sci and Tech. 34(5–6):267–72.
48.Liu Y, Lam MC, Fang HHP., 2001, “Adsorpti on of heavy metals by EPS of activated sludge.”Wat Sci Technol. 43(6):59–66.
49.Rudd T, Sterritt RM, Lester JN., 1984. “Formatio n and conditional stability constants of complexes formed between heavy metals and bacterial extracellular polymers.”Water Res . 18(3):379–84.
50.Soon-An Ong, Eiichi Toorisaka, Makoto Hirata, Tadashi Hano.,2004, “Effects of nickel(II) addition on the activity of activated sludge microorganisms and activated sludge process.”Journal of Hazardous Materials.B113:111-121.
51.羅時斌(2007)不同SRT下溶解性微生物產對生物除磷系統之影響,碩士論文,國立雲林科技大學環境與安全工程研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top