|
[1] R. E. L. Alfred and B. D. McKay. Graceful and harmonious labeling of trees. Bull. Inst. Appl. 23, 69-72, 1998. [2] G. S. Bloom, A Chronology of the Ringel-Kotzig Conjecture and the Continuing Quest to Call All Trees Graceful, Topics in Graph Theory (New York, 1977), 32-51, Ann. New York Acad. Sci., 328, New York Acad. Sci., New York, 1979 [3] M. Burzio and G Ferrarese, The Subdivision of a Graceful Tree is a Graceful Tree, Discrete Math., 181, 1998, No. 1-3, 275-281 [4] H. J. Broersma and C. Hoede, Another Equivalent of the Graceful Tree Conjecture, Ars Combin., 51, 1999, 183-192 [5] J.C. Bermond, D. Sotteau, Graph decompositions and G-design, in: Proc. 5th British Combin. Conf., 1975, Congr. Numer. XV (1976) 53-72. [6] I. Cahit, Status of graceful tree conjecture in 1989, in: R. Bodendieck, R. Henn (Eds.), Topics in Combinatorics and Graph Theory, in: Physica, Heildeberg, 1990. [7] F. R. K. Chung and F. K. Hwang, Rotatable graceful graphs, Ars Combin., 11 (1981) 239-250 [8] M. Edwards and L. Howard, A Survey of Graceful Trees, Atlantic Electronic Journal of Mathematics, Vol. 1, No. 1, 2006 [9] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb. (2012) #DS6. [10] S. W. Golomb, How to Number a Graph, Graph Theory and Computing, R. C. Read, ed., Academic Press, New York 1972, 23-37 [11] R. L. Graham and N. J. L. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Math., 1 (1980) 382-404 [12] P. Hrnciar, A. Haviar, All trees of diameter five are graceful, Discrete Math. 233 (2001) 133-150. [13] C. Huang, A. Kotzig, A. Rosa, Further results on tree labellings, Utilitas Math. 21c (1982) 31-48. [14] D. J. Jin, F. H. Meng, J.G. Wang, The gracefulness of trees with diameter 4, Acta Sci. Natur. Univ. Jilin. (1993) 17-22. [15] K. M. Koh, D. G. Rogers, T. Tan, Two Theorems on Graceful Trees, Discrete Math., 25, 1979, No. 2, 141-148 [16] M. Haheo, Strongly Graceful Graphs, Discrete Mathematics 29 (1980) 39-46. [17] D. Morgan, All Lobsters with Perfect Matchings are Graceful, Electron. Note. Discrete Math., 11 (2002) 6 pp. [18] S. Poljak, M. Sura, An algorithm for graceful labeling of a class of symmetrical trees, Ars. Combin. 14 (1982) 57-66. [19] G. Ringel, Problem 25, in Theory of Graphs and its Applications, Proc. Symposium Smolenice 1963, Prague (1964) 162. [20] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs (Proceedings of the Symposium, 1966, Rome), Gordon and Breach, New York, 1967, pp. 349-355. [21] G. Sethuraman and J. Heesintha, A New Class of Graceful Lobsters, J. Combin. Math. Combin. Computing, 67 (2008) 99-109 [22] R. A. Stanton and C. R. Zanke, Labeling of Balanced Trees, Proceedings of the Forth South-Eastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, 1973 [23] D. B. West, Introduction to Graph Theory, 2nd edn. Prentice Hall, Englewood Cliffs (2001) [24] S.-L. Zhao, All trees of diameter four are graceful, Ann. New York Acad. Sci. 576 (1989) 700-706. [25] B. Yao, H. Cheng, M. Yao, M.-M. Zhao, A Note on Strongly Graceful Trees, Ars Combin., 92, 2009, 155-169
|