跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:夏德玲
論文名稱:新穎側向閘極奈米線場效電晶體應用於即時偵測生物感測器
論文名稱(外文):Real-Time and Label-Free Detection of the Biomolecules with a Novel Side-Gated SiNW-FET Biosensor
指導教授:柯富祥柯富祥引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:奈米科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:102
中文關鍵詞:生物感測器奈米線場效電晶體腫瘤指標
外文關鍵詞:biosensornanowireFETDNAcancer marker
相關次數:
  • 被引用被引用:0
  • 點閱點閱:380
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
感測元件與生物分子的連結應用在未來的疾病診斷是個重要且具發展性的課題。在此篇論文中,我們選擇甲狀腺乳突癌症相關變異基因BRAFV599E 以及癌症指標物甲型胎兒蛋白抗原來當作偵測目標。我們以半導體奈米線為元件基礎的裝置做為新穎的生物感測器,可偵測的生物分子或是化學物種包括有低濃度化學成分離子、小分子、抗原抗體反應、檢測蛋白質、DNA 和病毒。在我的研究裡,使用了互補式金氧半場效電晶體的技術來製作新穎側向閘極場效電晶體生物感測器。利用矽的局部氧化製程來製作內縮線寬的奈米線,而此奈米線可以達到優異的高比表面積比以及獲得側向閘極控制,此兩項主要特色對於目前感測元件整合於微流道組件上有極大優勢及應用面。我們量測甲狀腺乳突癌症相關變異基因BRAFV599E 以及癌症指標物甲型胎兒蛋白抗原對於奈米線元件的電性變化影響,另外還利用了紅外線光譜儀、螢光顯微鏡以及紫外光光譜量測儀確認表面自組裝固定化的技術以及生物分子實驗條件的確立。最後總結出我們利用矽的局部氧化製程製作出的奈米線通道可使其線寬內縮到100 nm 以下的線寬,此條件提供元件電性達到優異的105 倍的開關電流比。利用此靈敏度高的元件我們可以偵測到濃度100 fM 的標的突變DNA 以及3 ng/mL的癌症標誌物抗原分子。結果顯示此新穎的側向閘極奈米線感測元件可以作為未來的免標定、即時偵測、高靈敏度以及優異專一性結合的場效電晶體生物感測器。另外,此元件具有獨立控制側向閘極的能力更提供了未來感測元件與微流道技術整合上的一大優勢。
It is an important and developing capable issue to combine the semiconductor sensor devices with biomolecules for the future application of disease diagnosis. In the present work, the BRAFV599E mutation gene and cancer marker α-fetoprotein, which have been recently reported to restrict to the papillary thyroid carcinomas (PTCs) and liver cancer, respectively, were chosen as the target biomolecules. The devices based on semiconductor nanowires exhibit high sensitive and selective characteristics for the real-time, label-free, and excellent specificity detection of biomolecules and chemical species. A novel side-gate silicon nanowire field effect transistor (SiNW-FET) is fabricated by using the complementary metal oxide
semiconductor (CMOS) FET compatible technology. The shrank nanowires with higher surface-to-volume ratio and individual side-gate for integration are achieved by the LOCOS process. Because of the above advantages, the devices have potential to integrate with microfluidic system for bio-detection application. Therefore, the detection strategy for PTC and liver cancer has been investigated with our SiNW-FET integration with microfluidic system for real-time sensing by measuring thecharacteristics of electrical signals. The FT-IR, fluorescence microscopy and UV spectrophotometer are also examined to check out our efficiency of the SAM and appropriate experimental parameters for bio-sensing. In the conclusion, the width of shrank nanowire by LOCOS process can be thinner than 100 nm. The drain current versus gate voltage (ID-VG) characteristic of the SiNW-FET exhibits about five orders of magnitude of Ion/Ioff ratio, and the threshold voltage shifts positively after hybridization of 100fM concentrations of BRAFV599E mutation gene and 3ng/mL concentrations of the cancer marker, α-fetoprotein,
respectively. The results show that the side-gate nanowire device has the capability of acting as a real-time, label-free, highly sensitive and excellent selectivity SiNW-FET
biosensor for important biomolecules. In addition, our approach offers a highly potential possibility to integrate with microfluidic-channel system for future parallel real-time detection of multiple chemical and biological species with controlling the individual side-gate in a single integrated chip.
Chapter 1: Introduction ..............................................................................................1
1.1 General Introduction .....................................................................................1
1.3 Introduction to Biosensor............................................................................10
1.3.1 Electrochemical biosensors ..............................................................11
1.3.2 Optical biosensors .............................................................................13
1.3.3 Piezoelectric biosensors ....................................................................15
1.4 Introduction to the Importance in Detection of Biomolecules.................17
Chapter 2: Literature Review...................................................................................19
2.1 Silicon Nanowire Field Effect Transisitor (Top–Down SiNW-FET) .......19
2.2 Real-time Nanowire Field-Effect-Transisitor Biosensors.........................28
2.3 Detection of Important Cancer Markers...................................................31
2.3.1 Introduction of Mutation Genes-BRAFV599E ..................................31
2.3.2 Introduction of Cancer Marker Alpha-Fetoprotein ......................33
2.4 Motivation.....................................................................................................35
2.5 Organization of the Thesis ..........................................................................38
Chapter 3: Experiments ............................................................................................39
3.1 General introduction ...................................................................................39
3.2 Experimental Procedure .............................................................................42
3.2.1 Fabrication of Side-gate Silicon Nanowire Field Effect Transistor
(NWFET) ....................................................................................................42
3.2.2 Fabrication of the Microfluidic System and Integration with the
SiNW-FET ..................................................................................................45
3.2.3 Immobilization of the Probe-DNA onto the Nanowire ..................48
3.2.4 Characterization of Detection Probe-DNA, Hybridization with
Target-DNA and Non-complementary DNA ...........................................50
3.2.5 Immobilization of the Anti-alpha-fetoprotein onto the Nanowires
......................................................................................................................52
3.2.6 Characterization of Detection Interaction of
Antigen-Alpha-Fetoprotein to the Antibody onto the Nanowires .........54
Chapter 4: Results and Discussions..........................................................................55
4.1 Physical and Electrical Properties of the Side-Gate SiNW-FET.............55
4.1.2 Determination of the Sub-threshold Swing ....................................59
4.1.3 Determination of On/Off Current Ratio.........................................59
4.1.4 Determination of the Field-effect Mobility .....................................60
4.2 Real-Time Detection of Multi-Steps-APTES Immobilization and
BRAFV599E Mutation Genes for Hybridization and Dehybridization Assay 61
4.2.1 Real-time Detection of the Different pH Value Solutions..............61
4.2.2 The Confirmation of Effect between Debye Length and Detecting
DNA Hybridization Signal ........................................................................65
4.2.3 Real-time Detection for Hybridization and Dehybridization of
Target-DNA on Immobilized Probe-DNA Modified Surface ................66
4.2.4 The Influence of Temperature on Efficiency of Hybridization and
Dehybridization Assay...............................................................................73
4.2.5 Quantification of Detection Target-DNA........................................81
4.3 Detection of Immobilized Anti-Alpha-Fetoprotein and Interacted with
Alpha-Fetoprotein..............................................................................................82
4.3.1 Detection of Anti-α-fetoprotein by FT-IR Assay ............................83
4.3.2 The Real-Time Detection of Antigen-Alpha-Fetoprotein ..............85
4.3.3 Quantification of Detection Antigen-Alpha-Fetoprotein...............89
Chapter 5: Conclusions .............................................................................................91
References...................................................................................................................92
Chapter1 ............................................................................................................92
Chapter2 ............................................................................................................95
Chapter3 ............................................................................................................99
Chapter4 ..........................................................................................................100
Chapter 1
1. Whitesides, G. M.; Love, J. C., The art of building small - Researchers are discovering cheap, efficient ways to make structures only a few billionths of a meter across. Scientific American 2001, 285, (3), 38-47.
2. H. V. Jansen, N. R. Tas and J. W. Berenschot, Encyclopedia of Nanoscience and Nanotechnology, ed. H. S. Nalwa, 2004, 5, 163.
3. International Technology Roadmaps for Semiconductors ITRS, 2005 Edition.
4. Harnett, C. K.; Coates, G. W.; Craighead, H. G., Heat-depolymerizable polycarbonates as electron beam patternable sacrificial layers for nanofluidics. Journal of Vacuum Science & Technology B 2001, 19, (6), 2842-2845.
5. Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D., Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Letters 2003, 3, (9), 1229-1233.
6. Kim, E.; Xia, Y. N.; Whitesides, G. M., Two- and three-dimensional crystallization of polymeric microspheres by micromolding in capillaries. Advanced Materials 1996, 8, (3), 245-&.
7. Lithography. International Technology Roadmaps for Semiconductors ITRS, 2005 Edition.
8. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J., Imprint lithography with 25-nanometer resolution. Science 1996, 272, (5258), 85-87.
9. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J., Imprint lithography for nanofabrication. J. Vac. Sci. Technol. B 1996, 14, 4129.
10. Chou, S. Y., Nanoimprint lithography and lithographically induced self-assembly. Mrs Bulletin 2001, 26, (7), 512-517.
11. Tsutsumi, T.; Suzuki, E.; Ishii, K.; Hiroshima, H.; Yamanaka, M.; Sakata, I.; Hazra, S.; Tomizawa, K., Properties of Si nanowire devices fabricated by using an inorganic EB resist process. Superlattices and Microstructures 2000, 28, (5-6), 453-460.
12. Wilbur, J. L.; Kumar, A.; Kim, E.; Whitesides, G. M., Microfabrication by Microcontact Printing of Self-Assembled Monolayers. Advanced Materials 1994, 6, (7-8), 600-604.
13. Johnson, S.; Burns, R.; Kim, E. K.; Schmid, G.; Dickey, M.; Meiring, J.; Burns, S.; Stacey, N.; Willson, C. G.; Convey, D.; Wei, Y.; Fejes, P.; Gehoski, K.; Mancini, D.; Nordquist, K.; Dauksher, W. J.; Resnick, D. J., Step and flash imprint lithography modeling and process development. Journal of Photopolymer Science and Technology 2004, 17, (3), 417-419.
14. Colburn, M.; Grot, A.; Choi, B. J.; Amistoso, M.; Bailey, T.; Sreenivasan, S. V.; Ekerdt, J. G.; Willson, C. G., Patterning nonflat substrates with a low pressure, room temperature, imprint lithography process. Journal of Vacuum Science & Technology B 2001, 19, (6), 2162-2172.
15. Chou, S. Y.; Krauss, P. R.; Renstrom, P. J., Imprint lithography with 25-nanometer resolution. Science 1996, 272, (5258), 85-87.
16. Chou, S. Y.; Krauss, P. R.; Zhang, W.; Guo, L. J.; Zhuang, L., Sub-10 nm imprint lithography and applications. Journal of Vacuum Science & Technology B 1997, 15, (6), 2897-2904.
17. Cheng, X.; Guo, L. J., One-step lithography for various size patterns with a hybrid mask-mold. Microelectronic Engineering 2004, 71, (3-4), 288-293.
18. Teo, B. K.; Sun, X. H., From top-down to bottom-up to hybrid nanotechnologies: Road to nanodevices. Journal of Cluster Science 2006, 17, (4), 529-540.
19. Cooper, M. A., Label-free screening of bio-molecular interactions. Analytical and Bioanalytical Chemistry 2003, 377, (5), 834-842.
20. Hu, S. Q.; Xie, J. W.; Xu, Q. H.; Rong, K. T.; Shen, G. L.; Yu, R. Q., A label-free electrochemical immunosensor based on gold nanoparticles for detection of paraoxon. Talanta 2003, 61, (6), 769-777.
21. Meadows, D., Recent developments with biosensing technology and applications in the pharmaceutical industry. Advanced Drug Delivery Reviews 1996, 21, (3), 179-189.
22. Stefan, R. I.; van Staden, J. F.; Aboul-Enein, H. Y., Immunosensors in clinical analysis. Fresenius Journal of Analytical Chemistry 2000, 366, (6-7), 659-668.
23. Guilbault, G. G.; Pravda, M.; Kreuzer, M.; O'Sullivan, C. K., Biosensors - 42 years and counting. Analytical Letters 2004, 37, (8), 1481-1496.
24. Purvis, D.; Leonardova, O.; Farmakovsky, D.; Cherkasov, V., An ultrasensitive and stable potentiometric immunosensor. Biosensors & Bioelectronics 2003, 18, (11), 1385-1390.
25. Susmel, S.; Guilbault, G. G.; O'Sullivan, C. K., Demonstration of labeless detection of food pathogens using electrochemical redox probe and screen printed gold electrodes. Biosensors & Bioelectronics 2003, 18, (7), 881-889.
26. Canziani, G.; Zhang, W. T.; Cines, D.; Rux, A.; Willis, S.; Cohen, G.; Eisenberg, R.; Chaiken, I., Exploring biomolecular recognition using optical biosensors. Methods 1999, 19, (2), 253-269.
27. Monk, D. J.; Walt, D. R., Optical fiber-based biosensors. Analytical and Bioanalytical Chemistry 2004, 379, (7-8), 931-945.
28. Kukanskis, K.; Elkind, J.; Melendez, J.; Murphy, T.; Miller, G.; Garner, H., Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor. Analytical Biochemistry 1999, 274, (1), 7-17.
29. Sapsford, K. E.; Shubin, Y. S.; Delehanty, J. B.; Golden, J. P.; Taitt, C. R.; Shriver-Lake, L. C.; Ligler, F. S., Fluorescence-based array biosensors for detection of biohazards. Journal of Applied Microbiology 2004, 96, (1), 47-58.
30. Ivnitski, D.; Abdel-Hamid, I.; Atanasov, P.; Wilkins, E., Biosensors for detection of pathogenic bacteria. Biosensors & Bioelectronics 1999, 14, (7), 599-624.

Chapter 2
1. Elibol, O. H.; Morisette, D.; Akin, D.; Denton, J. P.; Bashir, R., Integrated nanoscale silicon sensors using top-down fabrication. Applied Physics Letters 2003, 83, (22), 4613-4615.
2. Schubert, P. J.; Neudeck, G. W., Confined lateral selective epitaxial growth of silicon for devicefabrication. IEEE Electron Device Letters 1990, 11, 181-183.
3. Li, Z.; Chen, Y.; Li, X.; Kamins, T. I.; Nauka, K.; Williams, R. S., Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Letters 2004, 4, (2), 245-247.
4. Li, Z.; Rajendran, B.; Kamins, T. I.; Li, X.; Chen, Y.; Williams, R. S., Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation. Applied Physics a-Materials Science & Processing 2005, 80, (6), 1257-1263.
5. Sheu, J. T.; Chen, C. C.; Huang, P. C.; Lee, Y. K.; Hsu, M. L., Selective deposition of gold nanoparticles on SiO2/Si nanowires for molecule detection. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2005, 44, (4B), 2864-2867.
6. Ko, F. H.; Yeh, Z. H.; Chen, C. C.; Liu, T. F., Self-aligned platinum-silicide nanowires for biomolecule sensing. Journal of Vacuum Science & Technology B 2005, 23, (6), 3000-3005.
7. Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A., Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, (7127), 519-522.
8. Lieber, C. M., Nanoscale science and technology: Building a big future from small things. Mrs Bulletin 2003, 28, (7), 486-491.
9. Janata, J., 20 Years of Ion-Selective Field-Effect Transistors. Analyst 1994, 119, (11), 2275-2278.
10. Cui, Y.; Lieber, C. M., Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, (5505), 851-853.
11. Chen, Y.; Wang, X. H.; Erramilli, S.; Mohanty, P.; Kalinowski, A., Silicon-based nanoelectronic field-effect pH sensor with local gate control. Applied Physics Letters 2006, 89, (22), -.
12. Cui, Y.; Zhong, Z. H.; Wang, D. L.; Wang, W. U.; Lieber, C. M., High performance silicon nanowire field effect transistors. Nano Letters 2003, 3, (2), 149-152.
13. Jin, S.; Whang, D. M.; McAlpine, M. C.; Friedman, R. S.; Wu, Y.; Lieber, C. M., Scalable interconnection and integration of nanowire devices without registration. Nano Letters 2004, 4, (5), 915-919.
14. Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M., Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures (vol 430, pg 61, 2004). Nature 2004, 430, (7000), 704-704.
15. Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 2005, 23, (10), 1294-1301.
16. Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S., Electrochemical biosensors: recommended definitions and classification. Biosensors & Bioelectronics 2001, 16, (1-2), 121-131.
17. Wilson, G. S.; Gifford, R., Biosensors for real-time in vivo measurements. Biosensors & Bioelectronics 2005, 20, (12), 2388-2403.
18. Peyssonnaux, C.; Eychene, A., The Raf/MEK/ERK pathway: new concepts of activation. Biology of the Cell 2001, 93, (1-2), 53-62.
19. Kimura, E. T.; Nikiforova, M. N.; Zhu, Z. W.; Knauf, J. A.; Nikiforov, Y. E.; Fagin, J. A., High prevalence of BRAF mutations in thyroid cancer: Genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Research 2003, 63, (7), 1454-1457.
20. Cohen, J.; Xing, M. Z.; Mambo, E.; Guo, Z. M.; Wu, G. G.; Trink, B.; Beller, U.; Westra, W. H.; Ladenson, P. W.; Sidransky, D., BRAF mutation in papillary thyroid carcinoma. Journal of the National Cancer Institute 2003, 95, (8), 625-627.
21. Davies, H.; Bignell, G. R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M. J.; Bottomley, W.; Davis, N.; Dicks, N.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B. A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G. J.; Bigner, D. D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J. W. C.; Leung, S. Y.; Yuen, S. T.; Weber, B. L.; Siegler, H. F.; Darrow, T. L.; Paterson, H.; Marais, R.; Marshall, C. J.; Wooster, R.; Stratton, M. R.; Futreal, P. A., Mutations of the BRAF gene in human cancer. Nature 2002, 417, (6892), 949-954.
22. Rajagopalan, H.; Bardelli, A.; Lengauer, C.; Kinzler, K. W.; Vogelstein, B.; Velculescu, V. E., Tumorigenesis - RAF/RAS oncogenes and mismatch-repair status. Nature 2002, 418, (6901), 934-934.
23. Schnater, J. M.; Kohler, S. E.; Lamers, W. H.; von Schweinitz, D.; Aronson, D. C., Where do we stand with hepatoblastoma? Cancer 2003, 98, (4), 668-678.
24. Vonschweinitz, D.; Hecker, H.; Harms, D.; Bode, U.; Weinel, P.; Burger, D.; Erttmann, R.; Mildenberger, H., Complete Resection before Development of Drug-Resistance Is Essential for Survival from Advanced Hepatoblastoma - a Report from the German Cooperative Pediatric Liver-Tumor Study Hb-89. Journal of Pediatric Surgery 1995, 30, (6), 845-852.
25. Pritchard, J.; Brown, J.; Shafford, E.; Perilongo, G.; Brock, P.; Dicks-Mireaux, C.; Keeling, J.; Phillips, A.; Vos, A.; Plaschkes, J., Cisplatin, doxorubicin, and delayed surgery for childhood hepatoblastoma: A successful approach - Results of the first prospective study of the international society of pediatric oncology. Journal of Clinical Oncology 2000, 18, (22), 3819-3828.
26. Perilongo, G.; Brown, J.; Shafford, E.; Brock, P.; De Camargo, B.; Keeling, J. W.; Vos, A.; Philips, A.; Pritchard, J.; Plaschkes, J.; Pae, L. T. S. G. I. S.; , Hepatoblastoma presenting with lung metastases - Treatment results of the first cooperative, prospective study of the International Society of Paediatric Oncology on Childhood Liver Tumors. Cancer 2000, 89, (8), 1845-1853.
27. Perilongo, G.; Shafford, E.; Maibach, R.; Aronson, D.; Brugieres, L.; Brock, P.; Childs, M.; Czauderna, P.; MacKinlay, G.; Otte, J. B.; Pritchard, J.; Rondelli, R.; Scopinaro, M.; Staalman, C.; Plaschkes, J., Risk-adapted treatment for childhood hepatoblastoma: final report of the second study of the International Society of Paediatric Oncology-SIOPEL 2. European Journal of Cancer 2004, 40, (3), 411-421.
28. VonSchweinitz, D.; Byrd, D. J.; Hecker, H.; Weinel, P.; Bode, U.; Burger, D.; Erttmann, R.; Harms, D.; Mildenberger, H., Efficiency and toxicity of ifosfamide, cisplatin and doxorubicin in the treatment of childhood hepatoblastoma. European Journal of Cancer 1997, 33, (8), 1243-1249.
29. Brown, J.; Perilongo, G.; Shafford, E.; Keeling, J.; Pritchard, J.; Brock, P.; Dicks-Mireaux, C.; Phillips, A.; Vos, A.; Plaschkes, J., Pretreatment prognostic factors for children with hepatoblastoma results from the International Society of Paediatric Oncology (SIOP) Study SIOPEL 1. European Journal of Cancer 2000, 36, (11), 1418-1425.
30. Oberg, K. A.; Uversky, V. N., Secondary structure of the homologous proteins, alpha-fetoprotein and serum albumin, from their circular dichroism and infrared spectra. Protein and Peptide Letters 2001, 8, (4), 297-302.
31. Gillespie, J. R.; Uversky, V. N., Structure and function of alpha-fetoprotein: a biophysical overview. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology 2000, 1480, (1-2), 41-56.

Chapter 3
1. National Nano Device Laboratories. http://www.ndl.gov.tw/
2. Anderson, J. R.; Chiu, D. T.; Jackman, R. J.; Cherniavskaya, O.; McDonald, J. C.; Wu, H. K.; Whitesides, S. H.; Whitesides, G. M., Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Analytical Chemistry 2000, 72, (14), 3158-3164.
3. Yuan, H. D.; Mullett, W. M.; Pawliszyn, J., Biological sample analysis with immunoaffinity solid-phase microextraction. Analyst 2001, 126, (8), 1456-1461.
4. Kim, A.; Ah, C. S.; Yu, H. Y.; Yang, J. H.; Baek, I. B.; Ahn, C. G.; Park, C. W.; Jun, M. S.; Lee, S., Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Applied Physics Letters 2007, 91, (10), 103901.

Chapter 4
1. Terada, K.; Nishiyama, K.; Hatanaka, K., Comparison of MOSFET-threshold-voltage extraction methods. Solid-State Electronics 2001, 45, (1), 35-40.
2. Sheehan, P. E.; Whitman, L. J., Detection limits for nanoscale biosensors. Nano Letters 2005, 5, (4), 803-807.
3. Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, (5533), 1289-1292.
4. Laws, G. M.; Thornton, T. J.; Yang, J. M.; de la Garza, L.; Kozicki, M.; Gust, D., Molecular control of the drain current in a buried channel MOSFET. Physica Status Solidi B-Basic Research 2002, 233, (1), 83-89.
5. Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M., Directed assembly of one-dimensional nanostructures into functional networks. Science 2001, 291, (5504), 630-633.
6. Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M., Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry 1998, 70, (23), 4974-4984.
7. Iler, R. K., The Chemistry of Silica--Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley: New York 1979.
8. Vezenov, D. V.; Noy, A.; Rozsnyai, L. F.; Lieber, C. M., Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. Journal of the American Chemical Society 1997, 119, (8), 2006-2015.
9. Bolt, G. H., Detemination of the charge density of silica sols. J. Phys. Chem 1957, 61, 1166.
10. Nicollian, E. H.; Brews, J. R., MOS Physics and Technology, Wiley, New York 1982, 11, 920.
11. Allen, L. H.; Matijevi, E., Stability of Colloidal Silica, II. Ion Exchange. J. Colloid Interface Sci 1970, 33, 420
12. Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A., Importance of the debye screening length on nanowire field effect transistor sensors. Nano Letters 2007, 7, (11), 3405-3409.
13. Elfstrom, N.; Juhasz, R.; Sychugov, I.; Engfeldt, T.; Karlstrom, A. E.; Linnros, J., Surface charge sensitivity of silicon nanowires: Size dependence. Nano Letters 2007, 7, (9), 2608-2612.
14. Bunimovich, Y. L.; Shin, Y. S.; Yeo, W. S.; Amori, M.; Kwong, G.; Heath, J. R., Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. Journal of the American Chemical Society 2006, 128, (50), 16323-16331.
15. Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhausser, A.; Schoning, M. J., Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sensors and Actuators B-Chemical 2005, 111, 470-480.
16. Nielsen,; Egholm, P. E.; Berg M.; Buchardt R. H., Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991, 254, (5037), 1497-1500.
17. Jensen, K. K.; Orum, H.; Nielsen, P. E.; Norden, B., Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 1997, 36, (16), 5072-5077.
18. Kopp, M. U.; de Mello, A. J.; Manz, A., Chemical amplification: Continuous-flow PCR on a chip. Science 1998, 280, (5366), 1046-1048.
19. Hua, Q.; He, R. Q., Human neuronal tau promoting the melting temperature of DNA. Chinese Science Bulletin 2000, 45, (11), 999-1002.
20. Krisch, K. S.; Bude, J. D.; Manchanda, L., Gate capacitance attenuation in MOS devices with thin gate dielectrics. Ieee Electron Device Letters 1996, 17, (11), 521-524.
21. Etzioni, R.; Urban, N.; Ramsey, S.; McIntosh, M.; Schwartz, S.; Reid, B.; Radich, J.; Anderson, G.; Hartwell, L., The case for early detection. Nature Reviews Cancer 2003, 3, (4), 243-252.
22. Wulfkuhle, J. D.; Liotta, L. A.; Petricoin, E. F., Proteomic applications for the early detection of cancer. Nature Reviews Cancer 2003, 3, (4), 267-275.
23 Bellamy, L.L., The Infrared Spectra of Complex Molecules. Chapman and Hall 1975, 1.
24 Barbucci, A.; Magnani, A.; Roncolini, C.; Silvestri, S., Antigen antibody recognition by Fourier transform IR spectroscopy/attenuated total reflection studies/biotin-avidin complex as an example. Biopolymers 1991, 31, 827.
25 Ockman, N.,The antibody-antigen interaction at an aqueous-solid interface: a study by means of polarized infrared ATR spectroscopy, Biopolymers 1978, 17, 1273.
26. Mizejewski, G. J., Alpha-fetoprotein structure and function: Relevance to isoforms, epitopes, and conformational variants. Experimental Biology and Medicine 2001, 226, (5), 377-408.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊