跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/29 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝文建
研究生(外文):Wen-Jian Xie
論文名稱:H2成效保證之模糊控制器設計
論文名稱(外文):H2 Guaranteed Cost Fuzzy Control Design
指導教授:方 俊 雄
指導教授(外文):Chun-Hsiung Fang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:42
中文關鍵詞:模糊控制成效保證
外文關鍵詞:H2Guaranteed CostFuzzy Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:964
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對T-S模糊控制系統,提出狀態回授及觀測器輸出回授之設計方法,保證系統達到預定的H2控制成效。本論文採用Lyapunov function穩定度觀念,配合LMI技術,引進三指標組合方法,提出比現有文獻更加寬鬆之設計條件,在系統不含不確定量的情況之下,本文也提出一個步驟完成模糊觀測器設計的方法(目前文獻上針對類似問題皆採用兩步驟才能完成),所有的條件以LMI型式表示,方便求解運算及程式撰寫。
This thesis deals with H2 guaranteed cost fuzzy control problems for continuous
-time T-S fuzzy systems. Both state feedback cases and observer-based output feedback cases are investigated. Sufficient conditions for the existence of fuzzy controllers ensuring H2 guaranteed cost fuzzy controllers are given in terms of linear matrix inequalities (LMIs). In comparison with existing conditions, the proposed ones are more relaxed and thus may obtain a better H2 cost for performance control. When the system does not contain uncertainties, unlike existing literature using the two-step procedure, a one-step approach is proposed for the design of H2 guaranteed cost fuzzy controllers.
摘 要 I
Abstract II
致 謝 III
目 錄 IV
圖目錄 V
符號說明 VI
一、緒 論 1
1-1 文獻回顧與研究動機 1
1-2 論文綱要 2
二、問題描述與輔助定理之介紹 3
三、H2成效保證模糊狀態回授控制器設計 7
3-1狀態回授控制器設計 7
3-2數值模擬 11
四、H2成效保證模糊觀測控制器設計 17
4-1不含未確定項模糊系統之H2保證成本觀測器設計 17
4-2含有未確定項之H2保證成本模糊觀測器設計 26
4-3數值模擬 31
五、結論 38
參考文獻 39
[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM Press, Philadelphia, 1994.
[2] B. S. Chen, C. S. Tseng, “H. J. Uang, Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach,” IEEE Trans. Fuzzy Systems , vol. 3, pp. 249-265, 2000.
[3] S.G. Cao, N.W. Rees, G. Feng, “H-infinity control of nonlinear continuous-time systems based on dynamical fuzzy models,“ Internat. J. System Sci. 27, pp. 821-830, 1996.
[4] B. C. Ding, H. X. Sun, and Peng Yang, “Further studies on LMI-based stabilization conditions for nonlinear systems in Takagi-Sugeno’s form,” Automatica, vol. 42, no. 4, pp. 503-508, 2006.
[5] Chun-Hsiung Fang, Y. S. Liu, S. W. Kau, L. Hong, and C. H. Lee, “A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems,” IEEE Trans. on Fuzzy Systems, vol. 14, no. 3, pp. 386-397, Jun. 2006.
[6] P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, The LMI control toolbox, Math Works Inc, 1995.
[7] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523-534, Oct. 2000.
[8] G.-J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice Hall, Englewood Cliffs, NJ, 1995.
[9] Shin-Wei Kau, Hung-Jen Lee, Ching-Mao Yang, Ching-Hsiang Lee, Lin Hong, Chun-Hsiung Fang, “Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties, ” Fuzzy Sets and Systems, vol. 158, pp 135-146, 2007.
[10] Chong Lin, Qing-Guo Wang, Tong Heng Lee, “Improvement on observer-based H∞ control for T-S fuzzy systems,” Automatica, vol. 41, pp. 1651-1656, 2005.
[11] H. J. Lee, J. B. Park, and G. Chen, “Robust Fuzzy Control of Nonlinear Systems with Parametric Uncertainties,” IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 369-379, Apr. 2001.
[12] Ji-Chang Lo and Min-Long Lin, ”Robust H∞ nonlinear control via fuzzy static output feedback,” IEEE Trans on Circuts and Systems, vol 50, no. 11, pp.1464-1502, Nov, 2003.
[13] X. Liu and Q. Zhang, “New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, no. 9, pp. 1571-1582, Sep. 2003.
[14] Sing Kiong Nguang, ”H∞ fuzzy output feedback control design for nonlinear system: an LMI approach,“ IEEE Transactions on Fuzzy Systems, vol. 11, no. 3, pp. 331-340, Jun, 2003.
[15] Ian R. Petersen, Duncan C. Mcfarlane, and Mario A. Rotea,“Optimal guaranteed cost control of discrete-time uncertain linear system,” International Journal of Robust and Nonlinear Control, vol. 8, pp. 649-657, 1998.
[16] A.A. Stoorvogel,”The robust H2 control problem: a worst-case design” IEEE Transactions on Automatic Control,vol. 38, no. 9, pp. 1358-1370, Sep. 1993.
[17] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis. John Wiley & Sons, Inc, New York, 2001.
[18] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, pp. 135-156, 1992.
[19] K. Tanaka, T. Ikeda, and H. O. Wang, “Design of fuzzy control systems based on relaxed LMI stability conditions,” Proc. of 35th CDC, pp. 598-603, 1996.
[20] K. Tanaka, T. Ikeda, H.O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities,” IEEE Trans. Fuzzy Systems, vol.4, pp 1-13, 1996.
[21] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems vol. 6, pp. 250-265, 1998.
[22] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 116-132, Feb. 1985.
[23] Huai-Ning Wu, Kai-Yuan Cai, ”H2 guaranteed cost fuzzy control for uncertain nonlinear systems via linear matrix inequalities,” Fuzzy Sets and Systems, vol. 148, pp. 411-429, 2004.
[24] Huai-Ning Wu, Kai-Yuan Cai, ”H2 guaranteed cost control design for discrete-time nonlinear with parameter uncertainty,” Automatica, vol. 42, pp. 1183-1188, 2006.
[25] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans.on Fuzzy Systems, vol. 4, no. 1, pp. 14-23, 1996.
[26] W.-J. Wang and C.-H. Sun, “A Relaxed Stability Criterion for T-S Fuzzy Discrete System,” IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 34, no. 5, pp. 2155-2158, Oct. 2004.
[27] L.-X. Wang, A Course in Fuzzy Systems and Control. Prentice-Hall Inc, London, 1997.
[28] Z.-H. Xiu and G. Ren, “Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems,” Fuzzy Sets and Systems, vol. 151, pp.119-138, 2005.
[29] L. A. Zadeh, “Fuzzy set,” Information and Control, vol. 8, pp. 338-353, 1965.
[30] L. A. Zadeh, “Fuzzy algorithms,” Information and Control, vol. 12, no. 2 , pp. 94-102, 1968.
[31] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision process,” IEEE Trans. Syst., Man, Cybern., vol. 3, no. 1, pp. 28-44, 1973.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文