|
[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM Press, Philadelphia, 1994. [2] B. S. Chen, C. S. Tseng, “H. J. Uang, Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach,” IEEE Trans. Fuzzy Systems , vol. 3, pp. 249-265, 2000. [3] S.G. Cao, N.W. Rees, G. Feng, “H-infinity control of nonlinear continuous-time systems based on dynamical fuzzy models,“ Internat. J. System Sci. 27, pp. 821-830, 1996. [4] B. C. Ding, H. X. Sun, and Peng Yang, “Further studies on LMI-based stabilization conditions for nonlinear systems in Takagi-Sugeno’s form,” Automatica, vol. 42, no. 4, pp. 503-508, 2006. [5] Chun-Hsiung Fang, Y. S. Liu, S. W. Kau, L. Hong, and C. H. Lee, “A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems,” IEEE Trans. on Fuzzy Systems, vol. 14, no. 3, pp. 386-397, Jun. 2006. [6] P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, The LMI control toolbox, Math Works Inc, 1995. [7] E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523-534, Oct. 2000. [8] G.-J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications, Prentice Hall, Englewood Cliffs, NJ, 1995. [9] Shin-Wei Kau, Hung-Jen Lee, Ching-Mao Yang, Ching-Hsiang Lee, Lin Hong, Chun-Hsiung Fang, “Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties, ” Fuzzy Sets and Systems, vol. 158, pp 135-146, 2007. [10] Chong Lin, Qing-Guo Wang, Tong Heng Lee, “Improvement on observer-based H∞ control for T-S fuzzy systems,” Automatica, vol. 41, pp. 1651-1656, 2005. [11] H. J. Lee, J. B. Park, and G. Chen, “Robust Fuzzy Control of Nonlinear Systems with Parametric Uncertainties,” IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 369-379, Apr. 2001. [12] Ji-Chang Lo and Min-Long Lin, ”Robust H∞ nonlinear control via fuzzy static output feedback,” IEEE Trans on Circuts and Systems, vol 50, no. 11, pp.1464-1502, Nov, 2003. [13] X. Liu and Q. Zhang, “New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, no. 9, pp. 1571-1582, Sep. 2003. [14] Sing Kiong Nguang, ”H∞ fuzzy output feedback control design for nonlinear system: an LMI approach,“ IEEE Transactions on Fuzzy Systems, vol. 11, no. 3, pp. 331-340, Jun, 2003. [15] Ian R. Petersen, Duncan C. Mcfarlane, and Mario A. Rotea,“Optimal guaranteed cost control of discrete-time uncertain linear system,” International Journal of Robust and Nonlinear Control, vol. 8, pp. 649-657, 1998. [16] A.A. Stoorvogel,”The robust H2 control problem: a worst-case design” IEEE Transactions on Automatic Control,vol. 38, no. 9, pp. 1358-1370, Sep. 1993. [17] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis. John Wiley & Sons, Inc, New York, 2001. [18] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, pp. 135-156, 1992. [19] K. Tanaka, T. Ikeda, and H. O. Wang, “Design of fuzzy control systems based on relaxed LMI stability conditions,” Proc. of 35th CDC, pp. 598-603, 1996. [20] K. Tanaka, T. Ikeda, H.O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities,” IEEE Trans. Fuzzy Systems, vol.4, pp 1-13, 1996. [21] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems vol. 6, pp. 250-265, 1998. [22] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 116-132, Feb. 1985. [23] Huai-Ning Wu, Kai-Yuan Cai, ”H2 guaranteed cost fuzzy control for uncertain nonlinear systems via linear matrix inequalities,” Fuzzy Sets and Systems, vol. 148, pp. 411-429, 2004. [24] Huai-Ning Wu, Kai-Yuan Cai, ”H2 guaranteed cost control design for discrete-time nonlinear with parameter uncertainty,” Automatica, vol. 42, pp. 1183-1188, 2006. [25] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans.on Fuzzy Systems, vol. 4, no. 1, pp. 14-23, 1996. [26] W.-J. Wang and C.-H. Sun, “A Relaxed Stability Criterion for T-S Fuzzy Discrete System,” IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 34, no. 5, pp. 2155-2158, Oct. 2004. [27] L.-X. Wang, A Course in Fuzzy Systems and Control. Prentice-Hall Inc, London, 1997. [28] Z.-H. Xiu and G. Ren, “Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems,” Fuzzy Sets and Systems, vol. 151, pp.119-138, 2005. [29] L. A. Zadeh, “Fuzzy set,” Information and Control, vol. 8, pp. 338-353, 1965. [30] L. A. Zadeh, “Fuzzy algorithms,” Information and Control, vol. 12, no. 2 , pp. 94-102, 1968. [31] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision process,” IEEE Trans. Syst., Man, Cybern., vol. 3, no. 1, pp. 28-44, 1973.
|