跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:古博文
研究生(外文):Gu Bo-Wun
論文名稱:以還原氧化石墨烯/氧化鎳/銀奈米粒子作為電洞傳輸層之有機太陽能電池之研究
論文名稱(外文):Study on Organic Solar Cells with Reduced Graphene Oxide/ Nickel Oxide/ Ag Nanoparticles as Hole Transport Layer
指導教授:歐珍方
指導教授(外文):Cheng-Fang Ou
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:153
中文關鍵詞:高分子太陽能電池還原氧化石墨烯氧化鎳銀奈米粒子光電轉換效率
外文關鍵詞:polymer solar cellreduced graphene oxidenickel oxideAg nanoparticlespower conversion efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
石墨烯具有良好的導電、導熱、散熱及強度特性,未來可能取代矽成為新一代導電材料,又因其具有良好的導電性、透明度及韌性,適合被用來製作成可捲曲、透明、觸控等功能的顯示器和太陽能板。
本研究採用還原氧化石墨烯(r-GO, reduced-GO)與氧化鎳(NiOx)及油酸銀(OA-Ag)三層結構作為電洞傳輸層來製備有機太陽能電池,太陽能電池結構為(A) ITO/r-GO(1.0mg/ml,1~3層)/P3HT:PC61BM/Ca/Al、(B) ITO/r-GO/NiOx(0.5M,1~3層)/P3HT:PC61BM/Ca/Al、(C) ITO/r-GO/NiOx/ OA-Ag(1.0 mg/ml,1~4層)/P3HT:PC61BM/Ca/Al 。
我們利用紫外光-可見光吸收光譜儀( UV-Vis )、螢光光譜儀( PL )、掃描探針顯微鏡( SPM )、場發射掃描是電子顯微鏡(FE-SEM)
測量吸收度、放射螢光強度、表面型態與粗糙度。我們利用太陽光模擬光源系統 ( Solar Simulator ) 來測量J-V特性曲線和光電轉換效率。
電池結構(A)是以還原氧化石墨烯作為電洞傳輸層,由結果得知,當 r-GO塗佈2層(r-GO-2)熱還原溫度為250℃,此電池具有最高的光電轉換效率2.07%。
電池結構(B)是以還原氧化石墨烯與氧化鎳作為電洞傳輸層,當r-GO與NiOx各塗佈2層(r-GO-2/NiOx-2)具有最佳提升效果,因為此電池具有最高的短路電流密度8.34mA/cm2與光電轉換效率為2.93%。與結構(A)之電池比較,短路電流密度從6.23mA/cm2提高至8.34 mA/cm2 ,提升了33.9%。光電轉換效率由2.07%提高至2.93%,提升了41.5%。由結果知,當結構(A)再加入氧化鎳當電洞傳輸層時提升了高分子太陽能電池之短路電流密度與光電轉化效率。
電池結構(C) 以還原氧化石墨烯,氧化鎳層及油酸銀作為電洞傳輸層,以r-GO-2/NiOx-2/OA-Ag-3之結構具有最佳提升效果。短路電流密度(Jsc)提升至 9.1mA/cm2,提升了9.2%;光電轉換效率(PCE) 提升至3.45%,提升了 17.7%。由結果知,當結構(B)再加入油酸銀當電洞傳輸層時,提升了高分子太陽能電池之短路電流密度與光電轉化效率。由上述結果知,電池元件結構(C)比結構(A)與(B)具有較佳的光電特性。

Graphene exhibits good electron conductivity, thermal conductivity and strength. Graphene may become the new electron conductivity material in place of silicon in the future. Graphene may be used for flexible display and polymer solar cell due to its conductivity, transparent and toughness.
In this study, we used reduced graphene oxide (r-GO, reduced-GO)、nickel oxide (NiOx) and oleic acid silver (OA-Ag) as the hole transport layer (HTL) of polymer solar cells. We studied the effect of different layer and reduction temperature on the characteristics of polymer solar cells. The structures of solar cell were three types of (A) ITO / r-GO(1.0 mg / ml, 1 ~ 3 layers)/P3HT: PC61BM / Ca / Al, (B) ITO / r-GO / NiOx(0.5M, 1 ~ 3 layers) / P3HT: PC61BM / Ca / Al, and (C) ITO / r-GO / NiOx / OA-Ag (1.0 mg / ml, 1 ~4 layers)/ P3HT: PC61BM / Ca / Al。
We used the UV-Vis, PL, SPM, SEM to measure the absorbance, radiation fluorescence intensity, surface roughness and morphology, respectively. We used the solar simulator to measure J-V characteristic and power conversion efficiency of the device.
When the HTL of cell was two layers of r-GO (r-GO-2) and reduced at 250℃ in the structure (A). The cell exhibited the highest power conversion efficiency of 2.07 %.
When the HTL of cell was two layers of r-GO and two layers of NiOx (r-GO-2/NiOx-2) in the structure (B). The cell exhibited the highest short-circuit current density of 8.34 mA/cm2 and power conversion efficiency of 2.93 %. When compared to structure (A), the short-circuit current density was increased from 6.23 mA/cm2 to 8.34 mA/cm2, an increase of 33.9 %. The power conversion efficiency was increased from 2.07 % to 2.93 %, an increase of 41.5 %. From these results, adding the nickel oxide on the r-GO as hole transport layer can increase the short-circuit current density and power conversion efficiency of the polymer solar cells.
Reduced graphene oxide, nickel oxide, and oleic acid silver were used as HTL in the structure (C). The cell had the highest short-circuit current density and power conversion efficiency when its HTL was r-GO-2/NiOx-2/OA-Ag-3. When compared to structure (B), the short-circuit current density was increased to 9.11 mA/cm2, an increase of 9.2 % and the power conversion efficiency was increase to 3.45 %, an increase of 17.7 %. From these result, we found that adding oleic acid silver onto the r-GO/NiOx HTL can increase the short-circuit current density and power conversion efficiency of the polymer solar cell. The structure (C) exhibits the better performance than those of structure (A) or structure (B).

中文摘要 i
Abstract iii
誌謝 vi
目錄 viii
圖目錄 xiii
表目錄 xviii
第一章 緒論 1
1-1前言 1
1-2能源需求 2
1-3太陽能電池的簡介 3
1-4有機太陽能電池的發展 4
1-5 有機太陽能電池結構的演進 5
1-5-1單層結構有機太陽能電池 5
1-5-2 雙層異質界面結構有機太陽能電池 6
1-5-3 混合層異質界面結構有機太陽能電池 7
1-6金屬氧化鎳的簡介 8
1-6-1氧化鎳的應用 8
1-7研究動機與目的 10
第二章 文獻回顧 12
2-1太陽能電池原理介紹 12
2-2太陽能電池種類介紹 16
2-2-1 無機太陽能電池 17
2-2-1-1 單晶矽太陽能電池 17
2-2-1-2 多晶矽太陽能電池 18
2-2-1-3 非晶矽太陽能電池 18
2-2-2 有機太陽能電池 19
2-2-2-1 染料敏化有機太陽能電池(Dye-sensitized solar cell) 20
2-2-2-2共軛高分子太陽能電池(Conjugated polymer solar cell) 21
2-3 有機太陽能電池的工作原理 28
2-4 有機太陽能電池之特性分析 31
2-4-1 開路電壓(Open circuit voltage,VOC) 31
2-4-2 短路電流(Short circuit current,Isc) 32
2-4-3 填充因子(Fill factor,FF) 33
2-4-4 光電轉換效率(Power conversion efficiency,PCE) 34
2-5 太陽光譜 35
2-6金屬奈米粒子之簡介 37
2-7金屬奈米粒子之製備方法 39
2-8無機奈米粒子在有機太陽能電池的應用 40
2-9石墨烯的簡介 42
2-9-1 石墨烯的特性 43
2-9-2 石墨烯的結構 45
2-9-3 石墨烯之製備 47
2-9-4 石墨烯的分散 51
2-10石墨烯高分子太陽能電池 55
2-10-1 石墨烯應用於太陽能電池透光電極材料 56
2-10-2 石墨烯應用於太陽能電池受體材料 57
2-10-3 石墨烯應用於太陽能電池光陽極材料 59
2-11石墨烯/無機奈米複合材料的製備和應用 66
第三章 實驗方法與儀器 73
3-1 實驗材料與設備 73
3-1-1 實驗材料 73
3-1-2 實驗設備 78
3-2 儀器分析 80
3-3 製備氧化石墨烯/氧化鎳/油酸銀之流程 82
3-3-1 製備氧化石墨烯 82
3-3-2 還原氧化石墨(r-GO,reduced-GO) 83
3-3-3 製備氧化鎳溶液(NiOx) 83
3-3-4 油酸銀奈米粒子之合成 84
3-4 有機高分子太陽能電池元件製備 86
3-4-1 ITO導電玻璃之蝕刻 86
3-4-2 ITO導電玻璃之表面處理 86
3-4-3 UV ozone處理 87
3-4-4 r-GO/NiOx/OA-Ag電洞傳輸層之製備 88
3-4-5 有機主動層之製備 88
3-4-6 蒸鍍金屬陰極 89
實驗條件 90
第四章 結果與討論 95
4-1 氧化石墨烯的鑑定 95
4-1-1 熱重分析(TGA) 95
4-1-2 紫外光-可見光(UV-Vis)光譜分析 96
4-1-3 X光電子能譜儀(XPS)分析 97
4-1-4 X光繞射(XRD)分析 100
4-1-5 拉曼(Ranman)圖譜分析 101
4-2 有機高分子太陽能電池特性分析 103
4-2-1 電池元件結構(A)之特性分析 103
4-2-1-1 紫外光-可見光(UV-Vis)吸收光譜分析 104
4-2-1-2 掃描探針顯微鏡(SPM)分析圖 108
4-2-1-3 光電特性分析 111
4-2-1-4小結 112
4-2-2 電池元件結構(B)之特性分析 114
4-2-2-1 紫外光-可見光(UV-Vis)吸收光譜分析 114
4-2-2-2 PL螢光光譜分析 116
4-2-2-3 掃描探針顯微鏡(SPM)分析圖 118
4-2-2-4 場發射掃描式電子顯微鏡(FE-SEM) 121
4-2-2-5 光電特性分析 122
4-2-2-6 小結 123
4-2-3 電池元件結構(C)之特性分析 125
4-2-3-1 紫外光-可見光(UV-Vis)吸收光譜分析 125
4-2-3-2 PL螢光光譜分析 127
4-2-3-3 掃描探針顯微鏡(SPM)分析 128
4-2-3-4 場發射掃描式電子顯微鏡(FE-SEM) 131
4-2-3-5 光電特性分析 132
4-2-3-6 小結 133
第五章 結論 135
第六章 參考文獻 138

1. Y. He, H. Y. Chen, G. Zhao, J Hou, and Y Li, “Biindene-C60 Adducts for the Application as Acceptor in Polymer Solar Cells with Higher Open-Circuit-Voltage,”Solar Energy Materials and Solar Cells, 95, 899-903, (2011).
2. C. Duan, X. Hu, K. S. Chen, H.L. Yip, W. Li, F. Huang, A. K. Y. Jen, and Y. Cao, “Fully Visible-Light-Harvesting Conjugated Polymers with Pendant Donor-Π-Acceptor Chromophores for Photovoltaic Applications,”Solar Energy Materials and Solar Cells, 97, 50-58, (2012).
3. 莊嘉琛,“太陽能工程-太陽電池篇”,全華,1997。
4. C. B. Hatfield, “Oil Back on the Global Agenda,” Nature, 387, 121,
(1997).
5. K. W. J. Barnham, and M. Mazzer, “Resolving the Energy Crisis: Nuclear or Photovoltaics,” Nature Materials, 5, 161-64, (2006).
6. Nakaoka, K., J. Ueyama, and K. Ogura. “Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films,” Journal of Electroanalytical Chemistry, 571, 1, 93-99, (2004).
7. Hans G. Seiler “Handbook on metals in clinical and analytical chemistry,” ISBN, 509, 0-824749094-4, (1994).
8. Y. He, H. Y. Chen, G. Zhao, J Hou, and Y Li, “Biindene-C60 Adducts for the Application as Acceptor in Polymer Solar Cells with Higher Open-Circuit-Voltage,”Solar Energy Materials and Solar Cells, 95, 899-903, (2011).
9. C. Duan, X. Hu, K. S. Chen, H. L. Yip, W. Li, F. Huang, A. K. Y. Jen, and Y. Cao, “Fully Visible-Light-Harvesting Conjugated Polymers with Pendant Donor-Π-Acceptor Chromophores for Photovoltaic Applications,” Solar Energy Materials and Solar Cells, 97, 50-58, (2012).
10. L. Bian, E. Zhu, J. Tang, W. Tang, and F. Zhang, “Recent Progress in the Design of Narrow Bandgap Conjugated Polymers for High-Efficiency Organic Solar Cells,” Progress in Polymer Science, 37, 1292-331, (2012).
11. J. Meiss, M. Hummert, A. Petrich, S. Pfuetzner, K. Leo, and M. Riede, “Tetrabutyl-Tetraphenyl-Diindenoperylene Derivatives as Alternative Green Donor in Bulk Heterojunction Organic Solar Cells,” Solar Energy Materials and Solar Cells, 95, 630-35, (2011).
12. C. L. Chang, C. W. Liang, J. J. Syu, L. Wang, and M. k. Leung, “Triphenylamine-Substituted Methanofullerene Derivatives for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells,” Solar Energy Materials and Solar Cells, 95, 2371-79, (2011).
13. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, 25, 676-77, (1954).
14. B. O'Regan and M. Grätze l. “A low-cost, high-e_ciency solar cell
based on dye-sensitizedcolloidal TiO2 film,” Nature, 353, 737-740,
(1991).
15. 袁渭康、田禾、陳孔常,“從綠葉到激光光盤-顏色與化學”,牛頓出版社,2001。
16. M. Low, L. Greene, J. C. Johnson, R. Saykally and P. Yang,
“Nanowire dye-sensitized solar cells,” Nature Materials, 4, 455-459,
(2005).
17. G. D. Sharma, R. Kumar, S. K. Sharma and M. S. Roy, “Charge
generation and photovoltaic properties of hybrid solar cells based on
ZnO and copper phthalocyanines (CuPc),” Solar Energy Materials &
Solar Cells, 90, 933-943, (2006).
18. A.Yakimov and S.R. Forrest, “High photovoltage Multiple- heterojunction organic solar cells incorporating interfacial metallic nanoclusters,” Appl. Phys. Lett, 80, 1667-1669, (2002).
19. N.S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, 258, 1474-1476, (1992).
20. N.S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, Appl. Phys. Lett., 62, 585-587, (1993).
21. G. Yu, J. Gao, J. Hummelen, F. Wudl, and A.J. Heeger, Science, 270, 1789-1791, (1995).
22. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen, “2.5 % efficient organic plastic solar cell,” Appl. Phys. Lett., 78, 841-843, (2001).
23. F. Padinger, R.S. Rittberger, and N.S. Sariciftci, “Adv. Funct. Mater. 13, 85-88, (2003).
24. Gang Li, Vishal Shrotriya, Yan Yao, and Yang Yang, J. Appl. Phys., 98, 043704, (2005).
25. G.Li,V.l Shrotriya,J.Huang,Y.Yao,T.Moriarty, K.Emery,and Y.Yang, Nature Materials, 4, 864-868, (2005).
26. W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Hegger,” Adv. Funct. Mater 15, 1617-1622 (2005).
27. M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C Waldauf, A.J. Heeger, and C.J. Brabec, Adv. Mater,18, 789-794, (2006).
28. A. J. Heeger, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials,” The Journal of Physical Chemistry B, 105, 8476-8491, (2001).
29. http://www.astm.org/
30. http://www.nrel.gov/
31. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon Enhanced Performance of Organic Solar Cells Using Electrodeposited Ag Nanoparticles,” Applied Physics Letters, 93, 073307, (2008).
32. M. Y. Chang, Y. F. Chen, Y. S. Tsai, and K. M. Chi, “Blending Platinum Nanoparticles into Poly(3-Hexylthiophene):[6,6]-Phenyl-C[Sub 61]-Butyric Acid Methyl Ester Enhances the Efficiency of Polymer Solar Cells,” Journal of The Electrochemical Society, 156, 234-37, (2009).
33. F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-Enhanced Polymer Photovoltaic Devices Incorporating Solution-Processable Metal Nanoparticles,” Applied Physics Letters, 95, 013305, (2009).
34. Steirer, K. Xerxes, et al. “Solution deposited NiO thin-films as hole transport layers in organic photovoltaics,” Organic Electronics, 11.8, 1414-1418, (2010).
35. Park, Sun-Young, et al. “Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer,” Solar Energy Materials and Solar Cells, 94,12, 2332-2336, (2010).
36. Kim, Seung Ho, et al. “Annealing effects of Au nanoparticles embedded PEDOT: PSS in bulk heterojunction organic solar cells,” Synthetic Metals, 192, 101-105, (2014).
37. Lei, Hongwei, et al. “Enhanced efficiency in organic solar cells via in situ fabricated p-type copper sulfide as the hole transporting layer,” Solar Energy Materials and Solar Cells, 128, 77-84, (2014).
38. A. K. Geim, and P. Kim, “Graphene, a Newly Isolated Form of Carbon, Provides a Rich Lode of Novel Fundamental Physics and Practical Applications,” Scientific American, 298, 90-97, (2008).
39. cnx.org/content/m29187/latest/
40. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,”Science, 321, 385-88, (2008).
41. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The Electronic Properties of Graphene,” Review of Modern Physics, 81, 109-62, (2009).
42. A. K. Geim, and K. S. Novoselov, “The Rise of Graphene,” Nature Materials, 6, 183-91, (2007).
43. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science Magazine, 306, 666-69, (2004).
44. K. S. Novoselov, F. S. D. Jiang, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-Dimensional Atomic Crystals,” Proceedings of the National Academy of Sciences, 102, 10451-53, (2005).
45. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and Extrinsic Performance Limits of Graphene Devices on Sio2,” Nature Nanotechnology, 3, 206 - 09, (2008).
46. 洪偉修, '世界上最薄的材料--石墨烯', 康熹化學報 (2009-11).
47. H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, “High-Quality Graphene P−N Junctions Via Resist-Free Fabrication and Solution-Based Noncovalent Functionalization,” ACS Nano, 5, 2051-59, (2011).
48. F. Schwierz, “Graphene Transistors,” Nature Nanotechnology, 5, 487-96, (2010).
49. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Published Online April, 320, 1308, (2008).
50. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature,” Nano Letters, 6, 96-100, (2005).
51. Q. Liang, X. Yao, W. Wang, Y. Liu, and C. P. Wong, “A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials,” ACS Nano, 5, 2392-401, (2011).
52. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-Based Ultracapacitors,” Nano Letters, 8, 3498-502, (2008).
53. 洪偉修,“世界上最薄的材料-石墨烯”,98康熹化學報報,11
月號,2009。
54. 胡耀娟、金娟蔡、稱心,“石墨烯的製備、官能化及在化學中的
應用”,物理化學學報26期,6月,2010。
55. 黃嘉興, '舊材料的新見解—氧化石墨烯之界面活性', 工業材料雜誌 291期 3月(2011), 124-134.
56. W. A. D. Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M.l Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, “Epitaxial Graphene,” Solid State Communications, 143, 92-100, (2007).
57. A. J. V. Bommel, J. E. Crombeen, and A. V. Tooren, “Leed and Auger Electron Observations of the Sic(0001) Surface,” Surface Science, 48, 463-72, (1975).
58. F. Owman, and P. Mårtensson, “The Sic(0001)6√3 × 6√3 Reconstruction Studied with Stm and Leed,” Surface Science, 369, 126-36, (1996).
59. L. Li, and I. S. T. Tsong, “Atomic Structures of 6h Sic (0001) and (0001&Amp;#X0304;) Surfaces,” Surface Science, 351, 141-48, (1996).
60. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes,” Nature Nanotechnology, 5, 574-78, (2010).
61. V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-Throughput Solution Processing of Large-Scale Graphene,” Nature Nanotechnology, 4, 25-29, (2009).
62. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and Characterization of Graphene Oxide Paper,” Nature Materials, 448, 457-60, (2007).
63. Y. Si, and E. T. Samulski, “Synthesis of Water Soluble Graphene,” Nano Letters, 8, 1679-82, (2008).
64. J. Shen, Y. Hu, C. Li, C. Qin, and M. Ye, “Synthesis of Amphiphilic Graphene Nanoplatelets,” Small, 5, 82-85, (2009).
65. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao, “Facile Synthesis and Characterization of Graphene Nanosheets,” The Journal of Physical Chemistry C, 112, 8192-95, (2008).
66. 黃毅, and 陳永勝, “石墨烯的官能化及其相關應用,” 中國科學雜誌9期6月 (2009).
67. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and Characterization of Graphene Oxide Paper,” Nature, 448, 457-60, (2007).
68. S. Stankovich, R. Piner, S Nguyen, and R. Ruoff, “Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets,” Carbon, 44, 3342-47, (2006).
69. S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, “Solution Properties of Graphite and Graphene,” Journal of the American Chemical Society, 128, 7720-21, (2006).
70. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, “Simultaneous Nitrogen Doping and Reduction of Graphene Oxide,” Journal of the American Chemical Society, 131, 15939-44, (2009).
71. Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “Pegylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs,” Journal of the American Chemical Society, 130, 10876-77, (2008).
72. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, “Graphene Oxide Doped Polyaniline for Supercapacitors,” Electrochemistry Communications, 11, 1158-61, (2009).
73. H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace, and D. Li, “Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper,” Advanced Materials, 20, 3557-61, (2008).
74. S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, and R. D. Ruoff, “Hot Paper: Stable Aqueous Dispersions of Graphitic Nanoplatelets Via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(Sodium 4-Styrenesulfonate),” Royal Society of Chemistry, 16, 155-58, (2006).
75. X. Li, X. Wang, L. Zhang, S Lee, and H. Dai, “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors,” Science, 319, 1229-32, (2008).
76. Y. Liang, D. Wu, X. Feng, and K. Müllen, “Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions,” Advanced Materials, 21, 1679-83, (2009).
77. A. J. Patil, J. L. Vickery, T. B. Scott, and S. Mann, “Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites Using DNA,” Advanced Materials, 21, 3159-64, (2009).
78. Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, “Flexible Graphene Films Via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets,” Journal of the American Chemical Society, 130, 5856-57, (2008).
79. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, “Transparent Graphene/Pedot–Pss Composite Films as Counter Electrodes of Dye-Sensitized Solar Cells,” Electrochemistry Communications, 10, 1555-58, (2008).
80. J. I. Paredes, S. V. Rodil, A. M. Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir, 24, 10560-64, (2008).
81. B. H. Fan, X. G. Mei, K. Sun, and J. Y. Ouyang, Appl. Phys. Lett., 93,143103, (2008).
82. W. J. Hong, Y. X. Xu, G. W. Lu, C. Li and G. Q. Shi, Electrochem. Commun. 10, 1555, (2008).
83. G. Eda and M. Chhowalla, Nano Lett., 9, 2,814, (2009).
84. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, Electrochemistry Communications, 10,1555, (2008).
85. Liu Z, Liu Q, Huang Y, et al. “Organic photovoltaic devices based on a novel acceptor material: graphene,” Adv. Mater, 20(20), 3924-3930, (2008).
86. Liu Q, Liu Z, Zhang X, et al. “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater, 19(6), 894-904, (2009).
87. Liu Z, Liu L, Li H, et al. “Green” polymer solar cell based on water-soluble poly [3-(potassium-6-hexanoate) thiophene-2, 5-diyl] and aqueous-dispersible noncovalent functionalized graphene sheets,” Solar Energy Materials and Solar Cells, 97, 28-33, (2012).
88. Yu D, Park K, Durstock M, et al. “Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices,” The Journal of Physical Chemistry Letters, 2(10) , 1113-1118, (2011) .
89. Yu H, Kaneko Y, Yoshimura S, et al. “Photovoltaic cell of carbonaceous film/n-type silicon,” Applied Physics Letters, 68(4), 547-549, (1996).
90. Wei J, Jia Y, Shu Q, et al. “Double-walled carbon nanotube solar cells,” Nano Lett , 7(8), 2317-2321, (2007).
91. Arena A, Donato N, Saitta G, et al. “Photovoltaic properties of multi-walled carbon nanotubes deposited on n-doped silicon,” Microelectron. J, 39(12), 1659-1662, (2008).
92. Li Z, Kunets VP, Saini V, et al. “Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions,” ACS Nano, 3(6), 1407-1414, (2009).
93. Li X, Zhu H, Wang K, et al. “Graphene-on-silicon schottky junction solar cells,” Adv. Mater, 22(25) , 2743-2748, (2010).
94. Xie C, Lv P, Nie B, et al. “Monolayer graphene film/silicon nanowire array Schottky junction solar cells,” Applied Physics Letters, 99(13), 133113-1-3, (2011).
95. Xie C, Jie J, Nie B, et al. “Schottky solar cells based on graphene nanoribbon/multiple silicon nanowires junctions,” Applied Physics Letters, 100(19) , 193103-1-4, (2012).
96. Zhang L, Fan L, Li Z, et al. “Graphene-CdSe nanobelt solar cells with tunable configurations,” Nano Res, 4(9),891-900, (2011).
97. Liu Z, Li J, Sun ZH, et al. “The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells,” ACS Nano, 6(1), 810-818, (2012).
98. Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3ht,” Advanced Functional Materials, 19, 894-904, (2009).
99. S. Wang, B. M. Goh, K. K. Manga, Q. Bao, P. Yang, and K. P. Loh, “Graphene as Atomic Template and Structural Scaffold in the Synthesis of Graphene−Organic Hybrid Wire with Photovoltaic Properties,” ACS Nano, 4, 6180-86, (2010).
100. H. Chang, Y. Liu, H. Zhang, and J. Li, “Pyrenebutyrate-Functionalized Graphene/Poly(3-Octyl-Thiophene) Nanocomposites Based Photoelectrochemical Cell,” Journal of Electroanalytical Chemistry, 656, 269-73, (2011).
101. D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices,” The Journal of Physical Chemistry Letters, 2, 1113-18, (2011).
102. Li, Shao-Sian, et al. “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS nano, 4, 6, 3169-3174, (2010).
103. J. Wang, Y. Wang, D. He, Z. Liu, H. Wu, H. Wang, P. Zhou, and M. Fu, “Polymer Bulk Heterojunction Photovoltaic Devices Based on Complex Donors and Solution-Processable Functionalized Graphene Oxide,” Solar Energy Materials and Solar Cells, 96, 58-65, (2012).
104. C. L. Hsu, C. T. Lin, Je. H. Huang, C. W. Chu, K. H. Wei, and L. J. Li, “Layer-by-Layer Graphene/Tcnq Stacked Films as Conducting Anodes for Organic Solar Cells,” ACS Nano, 6, 5031-39, (2012).
105. Liu, Xiaodong, Hyunsoo Kim, and L. Jay Guo. “Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells,” Organic Electronics, 14.2, 591-598, (2013).
106. Yu, Jae Choul, et al. “Highly Efficient Polymer-Based Optoelectronic Devices Using PEDOT: PSS and a GO Composite Layer as a Hole Transport Layer,” ACS applied materials & interfaces, 6.3, 2067-2073, (2014).
107. H. Wang, J. T. Robinson, G. Diankov, and H. Dai, “Nanocrystal Growth on Graphene with Various Degrees of Oxidation,” Journal of the American Chemical Society, 132, 3270-71, (2010).
108. Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, and J. G. Hou, “Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored Cdse Nanoparticles,” ACS Nano, 4, 3033-38, (2010).
109. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene–Cds Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Advanced Materials, 22, 103-06, (2010).
110. P. Wang, T. Jiang, C. Zhu, Y. Zhai, D. Wang, and S. Dong, “One-Step, Solvothermal Synthesis of Graphene-Cds and Graphene-Zns Quantum Dot Nanocomposites and Their Interesting Photovoltaic Properties,” Nano Research, 3, 794-99, (2010).
111. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff, “Graphene−Silica Composite Thin Films as Transparent Conductors,” Nano Letters, 7, 1888-92, (2007).
112. K. K. Manga, S. Wang, M. Jaiswal, Q. Bao, and K. P. Loh, “High-Gain Graphene-Titanium Oxide Photoconductor Made from Inkjet Printable Ionic Solution,” Advanced Materials, 22, 5265-70, (2010).
113. G. Williams, B. Seger, and P. V. Kamat, “Tio2-Graphene Nanocomposites. Uv-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano, 2, 1487-91, (2008).
114. B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-Assisted Preparation and Patterning of Large-Area Reduced Graphene Oxide-Tio2 Conductive Thin Film,” Chemical Communications, 46, 3499-501, (2010).
115. K. Wang, Q. Liu, Q. M. Guan, J. Wu, H. N. Li, and J. J. Yan, “Enhanced Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Via Synergy Effect of Graphene and Cds Nanocrystals,” Biosensors and Bioelectronics, 26, 2252-57, (2011).
116. Ryu MS, Jang J. “Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic,” Sol Energy Mater Sol Cells, 95, 2893-6, (2011).
117. M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks. “p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proceedings of the National Academy of Sciences, 105, (8), 2783–2787, (2008).
118. Jung, Joohye, et al. “Stability enhancement of organic solar cells with solution-processed nickel oxide thin films as hole transport layers,” Solar Energy Materials and Solar Cells, 102, 103-108, (2012).
119. Chen, Jiajia, et al. “Improving the photocatalytic activity and stability of graphene-like BN/AgBr composites,” Applied Surface Science, 313, 1-9, (2014).
120. Kanwat, Anil, William Milne, and Jin Jang. “Vertical phase separation of PSS in organic photovoltaics with a nickel oxide doped PEDOT: PSS interlayer,” Solar Energy Materials and Solar Cells, 132, 623-631, (2015).
121. Tan, Licheng, et al. “Homogeneous Cu2 ZnSnSe4 Nanocrystals/Graphene Oxide Nanocomposites as Hole Transport Layer for Polymer Solar Cells,” Chemical Physics Letters, (2015).
122. W. S. Hummers, and R. E. Offeman, “Preparation of Graphitic Oxide,” Journal of the American Chemical Society, 80, 1339-39, (1958).
123. Z. S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H. M. Cheng, “Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation,” ACS Nano, 3, 411-17, (2009).
124. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide,” Carbon, 45, 1558-65, (2007).
125. J. Shen, Y. Hu, C. Li, C. Qin, and M. Ye, “Synthesis of Amphiphilic Graphene Nanoplatelets,” Small, 5, 82-85, (2009).
126. J. Li, and C. Y. Liu, “Ag/Graphene Heterostructures: Synthesis, Characterization and Optical Properties,” European Journal of Inorganic Chemistry, 1244-48, (2010).
127. S. Park, and R. S. Ruoff, “Chemical Methods for the Production of Graphenes,” Nature Nanotechnology, 4, 217-24, (2009).
128. S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, “Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties Via Chemical Cross-Linking,” ACS Nano, 2, 572-78, (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top