|
1. Y. He, H. Y. Chen, G. Zhao, J Hou, and Y Li, “Biindene-C60 Adducts for the Application as Acceptor in Polymer Solar Cells with Higher Open-Circuit-Voltage,”Solar Energy Materials and Solar Cells, 95, 899-903, (2011). 2. C. Duan, X. Hu, K. S. Chen, H.L. Yip, W. Li, F. Huang, A. K. Y. Jen, and Y. Cao, “Fully Visible-Light-Harvesting Conjugated Polymers with Pendant Donor-Π-Acceptor Chromophores for Photovoltaic Applications,”Solar Energy Materials and Solar Cells, 97, 50-58, (2012). 3. 莊嘉琛,“太陽能工程-太陽電池篇”,全華,1997。 4. C. B. Hatfield, “Oil Back on the Global Agenda,” Nature, 387, 121, (1997). 5. K. W. J. Barnham, and M. Mazzer, “Resolving the Energy Crisis: Nuclear or Photovoltaics,” Nature Materials, 5, 161-64, (2006). 6. Nakaoka, K., J. Ueyama, and K. Ogura. “Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films,” Journal of Electroanalytical Chemistry, 571, 1, 93-99, (2004). 7. Hans G. Seiler “Handbook on metals in clinical and analytical chemistry,” ISBN, 509, 0-824749094-4, (1994). 8. Y. He, H. Y. Chen, G. Zhao, J Hou, and Y Li, “Biindene-C60 Adducts for the Application as Acceptor in Polymer Solar Cells with Higher Open-Circuit-Voltage,”Solar Energy Materials and Solar Cells, 95, 899-903, (2011). 9. C. Duan, X. Hu, K. S. Chen, H. L. Yip, W. Li, F. Huang, A. K. Y. Jen, and Y. Cao, “Fully Visible-Light-Harvesting Conjugated Polymers with Pendant Donor-Π-Acceptor Chromophores for Photovoltaic Applications,” Solar Energy Materials and Solar Cells, 97, 50-58, (2012). 10. L. Bian, E. Zhu, J. Tang, W. Tang, and F. Zhang, “Recent Progress in the Design of Narrow Bandgap Conjugated Polymers for High-Efficiency Organic Solar Cells,” Progress in Polymer Science, 37, 1292-331, (2012). 11. J. Meiss, M. Hummert, A. Petrich, S. Pfuetzner, K. Leo, and M. Riede, “Tetrabutyl-Tetraphenyl-Diindenoperylene Derivatives as Alternative Green Donor in Bulk Heterojunction Organic Solar Cells,” Solar Energy Materials and Solar Cells, 95, 630-35, (2011). 12. C. L. Chang, C. W. Liang, J. J. Syu, L. Wang, and M. k. Leung, “Triphenylamine-Substituted Methanofullerene Derivatives for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells,” Solar Energy Materials and Solar Cells, 95, 2371-79, (2011). 13. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power,” Journal of Applied Physics, 25, 676-77, (1954). 14. B. O'Regan and M. Grätze l. “A low-cost, high-e_ciency solar cell based on dye-sensitizedcolloidal TiO2 film,” Nature, 353, 737-740, (1991). 15. 袁渭康、田禾、陳孔常,“從綠葉到激光光盤-顏色與化學”,牛頓出版社,2001。 16. M. Low, L. Greene, J. C. Johnson, R. Saykally and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, 4, 455-459, (2005). 17. G. D. Sharma, R. Kumar, S. K. Sharma and M. S. Roy, “Charge generation and photovoltaic properties of hybrid solar cells based on ZnO and copper phthalocyanines (CuPc),” Solar Energy Materials & Solar Cells, 90, 933-943, (2006). 18. A.Yakimov and S.R. Forrest, “High photovoltage Multiple- heterojunction organic solar cells incorporating interfacial metallic nanoclusters,” Appl. Phys. Lett, 80, 1667-1669, (2002). 19. N.S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science, 258, 1474-1476, (1992). 20. N.S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, Appl. Phys. Lett., 62, 585-587, (1993). 21. G. Yu, J. Gao, J. Hummelen, F. Wudl, and A.J. Heeger, Science, 270, 1789-1791, (1995). 22. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen, “2.5 % efficient organic plastic solar cell,” Appl. Phys. Lett., 78, 841-843, (2001). 23. F. Padinger, R.S. Rittberger, and N.S. Sariciftci, “Adv. Funct. Mater. 13, 85-88, (2003). 24. Gang Li, Vishal Shrotriya, Yan Yao, and Yang Yang, J. Appl. Phys., 98, 043704, (2005). 25. G.Li,V.l Shrotriya,J.Huang,Y.Yao,T.Moriarty, K.Emery,and Y.Yang, Nature Materials, 4, 864-868, (2005). 26. W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Hegger,” Adv. Funct. Mater 15, 1617-1622 (2005). 27. M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C Waldauf, A.J. Heeger, and C.J. Brabec, Adv. Mater,18, 789-794, (2006). 28. A. J. Heeger, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials,” The Journal of Physical Chemistry B, 105, 8476-8491, (2001). 29. http://www.astm.org/ 30. http://www.nrel.gov/ 31. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon Enhanced Performance of Organic Solar Cells Using Electrodeposited Ag Nanoparticles,” Applied Physics Letters, 93, 073307, (2008). 32. M. Y. Chang, Y. F. Chen, Y. S. Tsai, and K. M. Chi, “Blending Platinum Nanoparticles into Poly(3-Hexylthiophene):[6,6]-Phenyl-C[Sub 61]-Butyric Acid Methyl Ester Enhances the Efficiency of Polymer Solar Cells,” Journal of The Electrochemical Society, 156, 234-37, (2009). 33. F. C. Chen, J. L. Wu, C. L. Lee, Y. Hong, C. H. Kuo, and M. H. Huang, “Plasmonic-Enhanced Polymer Photovoltaic Devices Incorporating Solution-Processable Metal Nanoparticles,” Applied Physics Letters, 95, 013305, (2009). 34. Steirer, K. Xerxes, et al. “Solution deposited NiO thin-films as hole transport layers in organic photovoltaics,” Organic Electronics, 11.8, 1414-1418, (2010). 35. Park, Sun-Young, et al. “Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer,” Solar Energy Materials and Solar Cells, 94,12, 2332-2336, (2010). 36. Kim, Seung Ho, et al. “Annealing effects of Au nanoparticles embedded PEDOT: PSS in bulk heterojunction organic solar cells,” Synthetic Metals, 192, 101-105, (2014). 37. Lei, Hongwei, et al. “Enhanced efficiency in organic solar cells via in situ fabricated p-type copper sulfide as the hole transporting layer,” Solar Energy Materials and Solar Cells, 128, 77-84, (2014). 38. A. K. Geim, and P. Kim, “Graphene, a Newly Isolated Form of Carbon, Provides a Rich Lode of Novel Fundamental Physics and Practical Applications,” Scientific American, 298, 90-97, (2008). 39. cnx.org/content/m29187/latest/ 40. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,”Science, 321, 385-88, (2008). 41. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The Electronic Properties of Graphene,” Review of Modern Physics, 81, 109-62, (2009). 42. A. K. Geim, and K. S. Novoselov, “The Rise of Graphene,” Nature Materials, 6, 183-91, (2007). 43. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science Magazine, 306, 666-69, (2004). 44. K. S. Novoselov, F. S. D. Jiang, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-Dimensional Atomic Crystals,” Proceedings of the National Academy of Sciences, 102, 10451-53, (2005). 45. J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and Extrinsic Performance Limits of Graphene Devices on Sio2,” Nature Nanotechnology, 3, 206 - 09, (2008). 46. 洪偉修, '世界上最薄的材料--石墨烯', 康熹化學報 (2009-11). 47. H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, “High-Quality Graphene P−N Junctions Via Resist-Free Fabrication and Solution-Based Noncovalent Functionalization,” ACS Nano, 5, 2051-59, (2011). 48. F. Schwierz, “Graphene Transistors,” Nature Nanotechnology, 5, 487-96, (2010). 49. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Published Online April, 320, 1308, (2008). 50. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature,” Nano Letters, 6, 96-100, (2005). 51. Q. Liang, X. Yao, W. Wang, Y. Liu, and C. P. Wong, “A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials,” ACS Nano, 5, 2392-401, (2011). 52. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-Based Ultracapacitors,” Nano Letters, 8, 3498-502, (2008). 53. 洪偉修,“世界上最薄的材料-石墨烯”,98康熹化學報報,11 月號,2009。 54. 胡耀娟、金娟蔡、稱心,“石墨烯的製備、官能化及在化學中的 應用”,物理化學學報26期,6月,2010。 55. 黃嘉興, '舊材料的新見解—氧化石墨烯之界面活性', 工業材料雜誌 291期 3月(2011), 124-134. 56. W. A. D. Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M.l Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, “Epitaxial Graphene,” Solid State Communications, 143, 92-100, (2007). 57. A. J. V. Bommel, J. E. Crombeen, and A. V. Tooren, “Leed and Auger Electron Observations of the Sic(0001) Surface,” Surface Science, 48, 463-72, (1975). 58. F. Owman, and P. Mårtensson, “The Sic(0001)6√3 × 6√3 Reconstruction Studied with Stm and Leed,” Surface Science, 369, 126-36, (1996). 59. L. Li, and I. S. T. Tsong, “Atomic Structures of 6h Sic (0001) and (0001&Amp;#X0304;) Surfaces,” Surface Science, 351, 141-48, (1996). 60. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes,” Nature Nanotechnology, 5, 574-78, (2010). 61. V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-Throughput Solution Processing of Large-Scale Graphene,” Nature Nanotechnology, 4, 25-29, (2009). 62. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and Characterization of Graphene Oxide Paper,” Nature Materials, 448, 457-60, (2007). 63. Y. Si, and E. T. Samulski, “Synthesis of Water Soluble Graphene,” Nano Letters, 8, 1679-82, (2008). 64. J. Shen, Y. Hu, C. Li, C. Qin, and M. Ye, “Synthesis of Amphiphilic Graphene Nanoplatelets,” Small, 5, 82-85, (2009). 65. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao, “Facile Synthesis and Characterization of Graphene Nanosheets,” The Journal of Physical Chemistry C, 112, 8192-95, (2008). 66. 黃毅, and 陳永勝, “石墨烯的官能化及其相關應用,” 中國科學雜誌9期6月 (2009). 67. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and Characterization of Graphene Oxide Paper,” Nature, 448, 457-60, (2007). 68. S. Stankovich, R. Piner, S Nguyen, and R. Ruoff, “Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets,” Carbon, 44, 3342-47, (2006). 69. S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, “Solution Properties of Graphite and Graphene,” Journal of the American Chemical Society, 128, 7720-21, (2006). 70. X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. Dai, “Simultaneous Nitrogen Doping and Reduction of Graphene Oxide,” Journal of the American Chemical Society, 131, 15939-44, (2009). 71. Z. Liu, J. T. Robinson, X. Sun, and H. Dai, “Pegylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs,” Journal of the American Chemical Society, 130, 10876-77, (2008). 72. H. Wang, Q. Hao, X. Yang, L. Lu, and X. Wang, “Graphene Oxide Doped Polyaniline for Supercapacitors,” Electrochemistry Communications, 11, 1158-61, (2009). 73. H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace, and D. Li, “Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper,” Advanced Materials, 20, 3557-61, (2008). 74. S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, and R. D. Ruoff, “Hot Paper: Stable Aqueous Dispersions of Graphitic Nanoplatelets Via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(Sodium 4-Styrenesulfonate),” Royal Society of Chemistry, 16, 155-58, (2006). 75. X. Li, X. Wang, L. Zhang, S Lee, and H. Dai, “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors,” Science, 319, 1229-32, (2008). 76. Y. Liang, D. Wu, X. Feng, and K. Müllen, “Dispersion of Graphene Sheets in Organic Solvent Supported by Ionic Interactions,” Advanced Materials, 21, 1679-83, (2009). 77. A. J. Patil, J. L. Vickery, T. B. Scott, and S. Mann, “Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites Using DNA,” Advanced Materials, 21, 3159-64, (2009). 78. Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, “Flexible Graphene Films Via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets,” Journal of the American Chemical Society, 130, 5856-57, (2008). 79. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, “Transparent Graphene/Pedot–Pss Composite Films as Counter Electrodes of Dye-Sensitized Solar Cells,” Electrochemistry Communications, 10, 1555-58, (2008). 80. J. I. Paredes, S. V. Rodil, A. M. Alonso, and J. M. D. Tascón, “Graphene Oxide Dispersions in Organic Solvents,” Langmuir, 24, 10560-64, (2008). 81. B. H. Fan, X. G. Mei, K. Sun, and J. Y. Ouyang, Appl. Phys. Lett., 93,143103, (2008). 82. W. J. Hong, Y. X. Xu, G. W. Lu, C. Li and G. Q. Shi, Electrochem. Commun. 10, 1555, (2008). 83. G. Eda and M. Chhowalla, Nano Lett., 9, 2,814, (2009). 84. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, Electrochemistry Communications, 10,1555, (2008). 85. Liu Z, Liu Q, Huang Y, et al. “Organic photovoltaic devices based on a novel acceptor material: graphene,” Adv. Mater, 20(20), 3924-3930, (2008). 86. Liu Q, Liu Z, Zhang X, et al. “Polymer photovoltaic cells based on solution-processable graphene and P3HT,” Adv. Funct. Mater, 19(6), 894-904, (2009). 87. Liu Z, Liu L, Li H, et al. “Green” polymer solar cell based on water-soluble poly [3-(potassium-6-hexanoate) thiophene-2, 5-diyl] and aqueous-dispersible noncovalent functionalized graphene sheets,” Solar Energy Materials and Solar Cells, 97, 28-33, (2012). 88. Yu D, Park K, Durstock M, et al. “Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices,” The Journal of Physical Chemistry Letters, 2(10) , 1113-1118, (2011) . 89. Yu H, Kaneko Y, Yoshimura S, et al. “Photovoltaic cell of carbonaceous film/n-type silicon,” Applied Physics Letters, 68(4), 547-549, (1996). 90. Wei J, Jia Y, Shu Q, et al. “Double-walled carbon nanotube solar cells,” Nano Lett , 7(8), 2317-2321, (2007). 91. Arena A, Donato N, Saitta G, et al. “Photovoltaic properties of multi-walled carbon nanotubes deposited on n-doped silicon,” Microelectron. J, 39(12), 1659-1662, (2008). 92. Li Z, Kunets VP, Saini V, et al. “Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions,” ACS Nano, 3(6), 1407-1414, (2009). 93. Li X, Zhu H, Wang K, et al. “Graphene-on-silicon schottky junction solar cells,” Adv. Mater, 22(25) , 2743-2748, (2010). 94. Xie C, Lv P, Nie B, et al. “Monolayer graphene film/silicon nanowire array Schottky junction solar cells,” Applied Physics Letters, 99(13), 133113-1-3, (2011). 95. Xie C, Jie J, Nie B, et al. “Schottky solar cells based on graphene nanoribbon/multiple silicon nanowires junctions,” Applied Physics Letters, 100(19) , 193103-1-4, (2012). 96. Zhang L, Fan L, Li Z, et al. “Graphene-CdSe nanobelt solar cells with tunable configurations,” Nano Res, 4(9),891-900, (2011). 97. Liu Z, Li J, Sun ZH, et al. “The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells,” ACS Nano, 6(1), 810-818, (2012). 98. Q. Liu, Z. Liu, X. Zhang, L. Yang, N. Zhang, G. Pan, S. Yin, Y. Chen, and J. Wei, “Polymer Photovoltaic Cells Based on Solution-Processable Graphene and P3ht,” Advanced Functional Materials, 19, 894-904, (2009). 99. S. Wang, B. M. Goh, K. K. Manga, Q. Bao, P. Yang, and K. P. Loh, “Graphene as Atomic Template and Structural Scaffold in the Synthesis of Graphene−Organic Hybrid Wire with Photovoltaic Properties,” ACS Nano, 4, 6180-86, (2010). 100. H. Chang, Y. Liu, H. Zhang, and J. Li, “Pyrenebutyrate-Functionalized Graphene/Poly(3-Octyl-Thiophene) Nanocomposites Based Photoelectrochemical Cell,” Journal of Electroanalytical Chemistry, 656, 269-73, (2011). 101. D. Yu, K. Park, M. Durstock, and L. Dai, “Fullerene-Grafted Graphene for Efficient Bulk Heterojunction Polymer Photovoltaic Devices,” The Journal of Physical Chemistry Letters, 2, 1113-18, (2011). 102. Li, Shao-Sian, et al. “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells,” ACS nano, 4, 6, 3169-3174, (2010). 103. J. Wang, Y. Wang, D. He, Z. Liu, H. Wu, H. Wang, P. Zhou, and M. Fu, “Polymer Bulk Heterojunction Photovoltaic Devices Based on Complex Donors and Solution-Processable Functionalized Graphene Oxide,” Solar Energy Materials and Solar Cells, 96, 58-65, (2012). 104. C. L. Hsu, C. T. Lin, Je. H. Huang, C. W. Chu, K. H. Wei, and L. J. Li, “Layer-by-Layer Graphene/Tcnq Stacked Films as Conducting Anodes for Organic Solar Cells,” ACS Nano, 6, 5031-39, (2012). 105. Liu, Xiaodong, Hyunsoo Kim, and L. Jay Guo. “Optimization of thermally reduced graphene oxide for an efficient hole transport layer in polymer solar cells,” Organic Electronics, 14.2, 591-598, (2013). 106. Yu, Jae Choul, et al. “Highly Efficient Polymer-Based Optoelectronic Devices Using PEDOT: PSS and a GO Composite Layer as a Hole Transport Layer,” ACS applied materials & interfaces, 6.3, 2067-2073, (2014). 107. H. Wang, J. T. Robinson, G. Diankov, and H. Dai, “Nanocrystal Growth on Graphene with Various Degrees of Oxidation,” Journal of the American Chemical Society, 132, 3270-71, (2010). 108. Y. Lin, K. Zhang, W. Chen, Y. Liu, Z. Geng, J. Zeng, N. Pan, L. Yan, X. Wang, and J. G. Hou, “Dramatically Enhanced Photoresponse of Reduced Graphene Oxide with Linker-Free Anchored Cdse Nanoparticles,” ACS Nano, 4, 3033-38, (2010). 109. A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, and Y. Liu, “A Facile One-Step Method to Produce Graphene–Cds Quantum Dot Nanocomposites as Promising Optoelectronic Materials,” Advanced Materials, 22, 103-06, (2010). 110. P. Wang, T. Jiang, C. Zhu, Y. Zhai, D. Wang, and S. Dong, “One-Step, Solvothermal Synthesis of Graphene-Cds and Graphene-Zns Quantum Dot Nanocomposites and Their Interesting Photovoltaic Properties,” Nano Research, 3, 794-99, (2010). 111. S. Watcharotone, D. A. Dikin, S. Stankovich, R. Piner, I. Jung, G. H. B. Dommett, G. Evmenenko, S. E. Wu, S. F. Chen, C. P. Liu, S. T. Nguyen, and R. S. Ruoff, “Graphene−Silica Composite Thin Films as Transparent Conductors,” Nano Letters, 7, 1888-92, (2007). 112. K. K. Manga, S. Wang, M. Jaiswal, Q. Bao, and K. P. Loh, “High-Gain Graphene-Titanium Oxide Photoconductor Made from Inkjet Printable Ionic Solution,” Advanced Materials, 22, 5265-70, (2010). 113. G. Williams, B. Seger, and P. V. Kamat, “Tio2-Graphene Nanocomposites. Uv-Assisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano, 2, 1487-91, (2008). 114. B. Li, X. Zhang, X. Li, L. Wang, R. Han, B. Liu, W. Zheng, X. Li, and Y. Liu, “Photo-Assisted Preparation and Patterning of Large-Area Reduced Graphene Oxide-Tio2 Conductive Thin Film,” Chemical Communications, 46, 3499-501, (2010). 115. K. Wang, Q. Liu, Q. M. Guan, J. Wu, H. N. Li, and J. J. Yan, “Enhanced Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Via Synergy Effect of Graphene and Cds Nanocrystals,” Biosensors and Bioelectronics, 26, 2252-57, (2011). 116. Ryu MS, Jang J. “Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic,” Sol Energy Mater Sol Cells, 95, 2893-6, (2011). 117. M.D. Irwin, D.B. Buchholz, A.W. Hains, R.P.H. Chang, T.J. Marks. “p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” Proceedings of the National Academy of Sciences, 105, (8), 2783–2787, (2008). 118. Jung, Joohye, et al. “Stability enhancement of organic solar cells with solution-processed nickel oxide thin films as hole transport layers,” Solar Energy Materials and Solar Cells, 102, 103-108, (2012). 119. Chen, Jiajia, et al. “Improving the photocatalytic activity and stability of graphene-like BN/AgBr composites,” Applied Surface Science, 313, 1-9, (2014). 120. Kanwat, Anil, William Milne, and Jin Jang. “Vertical phase separation of PSS in organic photovoltaics with a nickel oxide doped PEDOT: PSS interlayer,” Solar Energy Materials and Solar Cells, 132, 623-631, (2015). 121. Tan, Licheng, et al. “Homogeneous Cu2 ZnSnSe4 Nanocrystals/Graphene Oxide Nanocomposites as Hole Transport Layer for Polymer Solar Cells,” Chemical Physics Letters, (2015). 122. W. S. Hummers, and R. E. Offeman, “Preparation of Graphitic Oxide,” Journal of the American Chemical Society, 80, 1339-39, (1958). 123. Z. S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H. M. Cheng, “Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation,” ACS Nano, 3, 411-17, (2009). 124. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide,” Carbon, 45, 1558-65, (2007). 125. J. Shen, Y. Hu, C. Li, C. Qin, and M. Ye, “Synthesis of Amphiphilic Graphene Nanoplatelets,” Small, 5, 82-85, (2009). 126. J. Li, and C. Y. Liu, “Ag/Graphene Heterostructures: Synthesis, Characterization and Optical Properties,” European Journal of Inorganic Chemistry, 1244-48, (2010). 127. S. Park, and R. S. Ruoff, “Chemical Methods for the Production of Graphenes,” Nature Nanotechnology, 4, 217-24, (2009). 128. S. Park, K. S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, and R. S. Ruoff, “Graphene Oxide Papers Modified by Divalent Ions—Enhancing Mechanical Properties Via Chemical Cross-Linking,” ACS Nano, 2, 572-78, (2008).
|