跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李御賓
研究生(外文):Yu-Ping, Li
論文名稱:摻雜 Er3+ 離子於 Gd2Ti2O7 奈米粉體與薄膜之上轉換螢光特性之研究
論文名稱(外文):A Study on Up-converted Luminescence Properties of Er3+-doped Gd2Ti2O7 Nanocrystals and Films.
指導教授:丁初稷
指導教授(外文):Chu-Chi, Ting
口試委員:林祐綜許佳振
口試委員(外文):Yow-Jon, LinChia-Chen, Hsu
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:117
中文關鍵詞:上轉換
外文關鍵詞:up conversion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究改變不同的摻雜濃度與製程溫度來合成Er3+-doped Gd2Ti2O7粉末與薄膜,並探討其螢光特性、薄膜特性。
我們使用溶膠-凝膠法製備Er3+ (5, 10, 15, 20 mol%)-doped Gd2Ti2O7奈米粉末,在980 nm雷射激發下得知其在Er3+ (10 mol%)–doped Gd2Ti2O7 粉末在退火溫度超過800℃後,具有下與上轉換發光特性,其發光峰值分別為405 nm (2H9/2→4I15/2)、520 nm (4H11/2→4I15/2)、545 nm (4S3/2→4I15/2)、650 nm (4F9/2→4I15/2)、1534 nm ( 4I13/2→4I15/2)。且由XRD繞射圖的結果得知具有良好的結晶特性,其平均結晶顆粒大小在 SEM 觀察下可發現隨著退火溫度的提高 (800~1200 ℃) 而從~80 nm增加到~200 nm。
我們在Er3+ (0, 10, 20, 100 mol%)-doped Gd2Ti2O7薄膜在不同的摻雜濃度和製程溫度下,研究其薄膜的光學性質與其成膜後的表面粗糙度,再選擇以spin-coating 的方式將溶膠狀的螢光粉塗佈在玻璃基板後,發現其平均粗糙度都在 0.1 nm~0.214 nm 間,並以包絡線之方法求得光學薄膜之常數(折射率、光學能隙、堆積密度)與製程溫度和摻雜濃度的關係。

The purpose of this paper is to change the different doping concentration and the process temperature to synthesize of Er3+-doped Gd2Ti2O7 powders and films, and to explore its fluorescence properties and characteristics of thin films.
Er3+-doped Gd2Ti2O7 nanocrystals were fabricated by the sol-gel method.Under the 980 nm laser excitation of the Er3+ (10 mol%) – doped Gd2Ti2O7 powder with annealing more than 800 ℃ can produce the up-conversion (405, 520, 545, and 650 nm; 2H9/2→4I15/2, 4H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2, respectively) and Stokes luminescence (1534 nm; 4I13/2→4I15/2).And the XRD shows that while the annealing temperature exceeds 800 °C, amorphous pyrochlore phase Er3+-doped Gd2Ti2O7 transfers to well-crystallized nanocrystals. The average crystal size can be observed by SEM that it increases from 80 nm to 200nm while the annealing temperature increases from 800 to 1200 °C for an hour.
We discuss optical properties and roughness of the Er3+ (0, 10, 20, 100 mol%)-doped Gd2Ti2O7film in different concentration and processing temperature.And then we coat colloidal phosphor on the glasses by spin coating. It is found that the average roughness is at 0.1 nm to 0.214 nm, and we use the method (by R.Swanepoel) to obtain the relations of film refractive index, optical band gap and packing density between the process temperature and doping concentration.

目錄
摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 IX
圖目錄 X
一、緒論 15
1-1 研究背景 15
1-2 研究動機 16
二、文獻回顧與理論基礎 17
2-1 螢光材料的分類 17
2-1-1 螢光材料的組成分類 17
2-1-2以螢光材料發光物性分類 18
2-1-3以螢光材料發光物性分類 20
2-1-4以激發源種類及其應用特性分類 22
2-2 發光機制簡介 23
2-2-1 發光原理 23
2-2-2 螢光(flouorescence) 與磷光 (phosphorescence) 24
2-2-3 史托克位移 (Stokes Shift) 25
2-2-4 波拉特選擇律 (LaPorte Rule) 27
2-2-5 自旋選擇律 (spin selection rule) 27
2-2-6固態材料中的發光 27
2-2-6-1 本質發光 (Intrinsic Luminescence) 28
2-2-6-2 異質發光 (Extrinsic Luminescence) 29
2-3-1 主體晶格效應 (Host effect) 31
2-3-2 濃度淬滅效應 (Concentration quenching) 32
2-3-3熱淬滅 (thermal quenching) 34
2-3-4雜質毒化 (poisoning) 34
2-4螢光材料之組成與設計 34
2-5 螢光材料製程 36
2-5-1 固相反應法 [19,20] 37
2-5-2 溶膠凝膠法(Sol-Gel Method) [21] 37
2-5-3 水熱法(Hydrothermal method) [22,23] 38
2-5-4 共沉澱法(Co-precipitation method) [24] 39
2-5-5 其他製程 39
2-6稀土元素簡介 40
2-6-1鑭系元素之性質 40
2-6-2 稀土離子之電子躍遷 41
2-7 薄膜光學常數的常用量測方法介紹 43
2-7-1 包絡法 43
2-7-2 包絡法理論 44
2-8 文獻回顧 48
2-8-1 A2B2O7 晶體研究簡介 48
三、實驗方法 68
3-1 實驗藥品 68
3-2 製程設備 69
3-3 量測儀器 69
3-3-1 X-ray 粉末繞射分析 69
3-3-2 掃瞄式電子顯微鏡 70
3-3-3 光致發光光譜 70
3-3-4紫外-可見分光光譜儀 (UV-Visible Spectrophotometer) 71
3-3-5原子力顯微鏡 (Atomic Force Microscope) 72
3-4 實驗步驟 73
3-4-1 螢光粉體製程步驟 73
3-4-1 螢光薄膜製程步驟 74
四、結果與討論 81
4-1 X-ray粉末繞射分析 81
4-2掃瞄式電子顯微鏡分析 82
4-3光致發光光譜分析 83
4-3-1 全光譜分析 83
4-4穿透光譜分析 87
4-4-1 穿透光譜分析 87
4-4-2 由穿透光譜來分析光學能隙 88
4-4-3 由穿透光譜來分析折射率 90
4-4原子力顯微鏡分析 91
第五章 結論與未來展望 112
參考文獻 115

參考文獻
[1]Langlet M, Coutier C, Fiek J , Andier M, Meffre W, Jacquier B, Rimet R., Opt. Mater. , 2001 , 16: 463.
[2]bJenouvrier P, Langlet M, Rimet R, Fick J., Appl. Phys. A, 2003 , 77: 687.
[3]Pang M L, Lin J , Fu J , Cheng Z Y., Mater. Res. Bull., 2004 , 39: 1607.
[4]Zhang F X, Saxena S K., Chem. Phys. Lett. , 2005 ,413 , 248.
[5]R.C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, The Netherlands, 1991, p. 20.
[6]J. E. Yang, “The Application and Investigation of Luminescence Materials in Electronic Industry”, Technical Report of ITRI, Hsinchu, Taiwan, 1992, p. 50.
[7]R.C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, The Netherlands, 1991, p. 20.
[8]C. Feldmann, T. Jüstel, C. R. Ronda and P. J. Schmidt, Adv. Funct. Mater. 13 (2003) 511
[9]J. A. DeLuca, J. Chem. Edu. 57 (1980) 541.
[10] A. H. Kitai, “Solid state luminescence”, Chapman & Hall, Inc., UK, 1993, p. 30.
[11] G. Blasse, and B. C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, 1994, p. 13.
[12] Jablonskidiagram, http://www.shsu.edu/~chemistry/chemiluminescence/JABLONSKI.htm
[13] G. Blasse, B.C. Grabmaier, “Luminescent Materials”, Springer Verlag, Berlin Heidelberg, 1994, p.34-35.
[14] G. Liu, B. Jacquier, “Spectroscopic Properties of Rare Earths in Optical Materials”, Springer, New York, 2005, p.109.
[15] P. Guo, F. Zhao, G. Li, F. Liao, S. Tian and X. Jing, J. Lumin. 105 (2003) 61
[16] A. H. Kitai, “Solid state luminescence”, Chapman & Hall, Inc., UK, 1993, p. 38.
[17] R.C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, The Netherlands, 1991, p. 20
[18] E. N. Harvey, “A history of luminescence”, American philosophical society, Philadelphia, 1957, p. 18.
[19] W. R. Blumenthal and D. S. Philips, J. Am. Ceram. Soc. 79 (1996) 1047.
[20] A. Ikesue and I. Furusato, J. Am. Ceram. Soc. 78 (1995) 225.
[21] R. P. Rao, J. Electrochem. Soc. 143 (1996) 189
[22] L. Xie and A. Ncormack, J. Solid State Chem. 83 (1989) 282.
[23] C. Yoon and S. Kang, J. Mater. Res. 16(4) (2001) 1210.
[24] M. Gomi, Jpn. J. Appl. Phys. 35 (1996) 1798
[25] W. Jia, H. Yuan, L. Lu, H. Liu and W. M. Yen, J. Lumin. 76-77 (1998) 424.
[26] W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, J. Lumin. 83-84 (1999) 465.
[27] X. Ouyang, A. H. Kitai and Xiao, J. Appl. Phys. 79 (1996) 3229.
[28] V. Bondar, Mater. Sci. Engin. B69-70 (2000) 505.
[29] 張有義、郭蘭生編著,“膠體與界面化學入門”,高立圖書公司,台北市,民國86年。
[30] D. Myers, “Surfactant Science and Tecnology”, VCH, New York, 2000, p. 84.
[31] P. Dorenbos, J. Phys.: Condens. Matter. 15 (2003) 8417.
[32] P. Dorenbos, J. Lumin 111 (2005) 89.
[33] G. Blasse, ’’Handbook on the Physics and Chemistry of Rare Earths’’, North Holland, 1979, p. 237.
[34] G.Huber, K. Syassen, and W. B. Holzapfel, Phy. Rev. B 15 (1977) 5123.
[35] P. Atkins and D. de Paula, “Physical Chemistry”, Oxford university press, 1997, p. 207.
[36] ASTM JCPDS File No. 42-0413 (Y2Ti2O7) (1997).
[37] M.J. Weber, Phys. Rev. 171, 283 (1968).
[38] L.A. Riseberg, H.W. Moos, Phys. Rev. 174, 429 (1968).
[39] C.C. Ting, S.Y. Chen, H.Y. Lee, J. Appl. Phys. 94, 2102 (2003).
[40] F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Chem. Mater. 15, 2737 (2003).
[41] X. Orignac, D. Barbier, X.M. Du, R.M. Almeida, O. McCarthy, E.  Yeatman, Opt. Mater. 12, 1 (1999).
[42] M. Carrada, F. Gourbilleau, C. Dufour, M. Levalois, R. Rizk, Opt.
Mater. 27, 915 (2005).
[43] A. Walasek, E. Zych, J. Zhang, S. Wang, J. Lumines. 127, 523(2007).
[44] S. Elliot, The Physics and Chemistry of Solids, John Wiley, New York, 1998 [chapter 5].
[45] A.A. Al-Ghamdi, Shamshad A. Khan, Physica B 404 (2009) 4262–4266
[46] Q. Yu, H. Yang, W. Fu, L. Chang, J. Xu, C. Yu, R. Wei,K. Du, H. Zhu, M. Li, G. Zou, Thin Solid Films 515(2007) 3840–3843
[47] R.C. Ropp, “Luminescence and the Solid State”, Elsevier Science Publishers, The Netherlands, 1991, p. 20.
[48] J. E. Yang, “The Application and Investigation of Luminescence Materials in Electronic Industry”, Technical Report of ITRI, Hsinchu, Taiwan, 1992, p. 50.
[49] H. Li, J. Wang, H. Liu, H. Zhang, X. Li, J. Cryst.Growth 275
(2005) e943.
[50] N.F. Mott, E.A. Davis, Electronics Processes in Non-Crystalline Materials, vol. 428, Clarendon, Oxford, 1979.
[51] D. Goldschmidt, H.L. Tuller, Phys. Rev., B 34 (1986) 5558.
[52] M.W. Barsoum, Fundamentals of Ceramics, McGraw-Hill, New York, 2003, p. 150.
[53] E. Burstein, Phys. Rev. 93 (1954) 632.
[54] T.S. Moss, Proc. Phys. Soc. B 67 (1954) 755.
[55] A.A. Dakhel, Opt. Mater. 31 (2009) 691.
[56] Y. Takahashi, S. Okada, R.B.H. Tahar, K. Nakano, T. Ban, Y. Ohya, J. Non-Cryst. Solids 218, 129 (1997).
[57] R. Swanepoel, J. Phy. E. Sci. Ins. 16 (1983) 1214.
[58] R. Thielsch, K. Kaemmer, B. Holzapfel and L. Schultz, Thin Solid Films 301 (1997) 203.
[59] 柯昱光,2005,"以原子力顯微鏡分析透光莫來石玻璃陶瓷之奈米微結構與成核密度"大同大學材料工程研究所碩士論文

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top