跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 12:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林庭輝
研究生(外文):Ting-Huei Lin
論文名稱:有限元素法準確度增進與波導轉接設計
論文名稱(外文):FEM Accuracy Improvement and Waveguide Transition Design
指導教授:吳瑞北
指導教授(外文):Ruey-Beei Wu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:134
中文關鍵詞:有限元素法反射係數波導轉接槽線微帶線共面波導
外文關鍵詞:FEMreflection coefficientwaveguide transitionslotlinemicrostripCPW
相關次數:
  • 被引用被引用:0
  • 點閱點閱:335
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文目的在探討以有限元素法分析波導不連續問題之準確度增進及波導轉接設計的問題。在分析金屬波導不連續的問題上,乃利用有限元素法結合模態展開技術。其中有限元素法所使用之計算式可基於電場或磁場稱之電場計算式或磁場計算式。藉由平均以電場計算式與磁場計算式在相同切割情形下所計算之結果,有限元素法數值解之準確度增進乃進一步的被分析。
在準確度增進之探討中,本論文推導了有限元素法之電場計算式與磁場計算式及其所對應之變分式,並分析各變分式穩定點所代表之物理意義。除了推導有限元素法以電場計算式或磁場計算式,求解波導不連續問題之反射係數的數值誤差式外。論文中主要利用對許多問題的實際數值分析結果,來說明用平均電場計算式與磁場計算式兩種數值結果的優點。在研究中顯示,對於分析波導不連續問題之同一輸出入埠之同一模態反射係數,此法可提供有效之準確度增進。對於不同輸出入埠或不同模態散射係數,此法並未能提供有效之準確度增進,但由此法所得之兩個數值解,可進一步提供評估數值誤差之參考資料。
本論文之另一重點在設計波導不連續之轉接。在方形波導到平面波導轉接方面,我們提出一新的轉接結構,此結構之轉接機制主要利用平面電路之漸開槽式帶線探針至方形波導電場面的耦合轉接。文中除探討此轉接結構的設計方法外,亦就影響此結構特性的多項參數進行數值分析。
利用此新的方形波導到平面波導轉接結構,設計了包括槽線到方形波導、微帶線到方形波導、共面波導到方形波導等各種傳輸線之新的轉接結構。文中除了探討轉接結構的設計方法和程序外,也利用數值計算設計了X頻帶與Ka頻帶的轉接,並對許多設計結果進行實驗驗證。從設計結果顯示,此轉接設計具有寬頻、小尺寸、易組裝、低製造成本和高可靠度等優點。
最後,利用共振耦合機制設計一新的微帶線到共面波導的平面波導間的寬頻轉接結構。同樣的,除了探討轉接結構的設計方法和程序外,亦利用數值計算設計了C頻帶與K頻帶的轉接,並對C頻帶設計結果進行實驗驗證。此轉接結構的主要特點包括有寬頻、易製造、不需在電路板上穿孔及打線等,因此具有廣泛被應用在射頻電路之潛力。

To improve the accuracy of FEM for waveguide discontinuity problems and waveguide transition design are investigated in this dissertation. The FEM method hybridizing modal expansion technique is employed to solve metallic waveguide discontinuity problems. The FEM was formulated in terms of electric or magnetic fields, called E- or H- formulations. By averaging the results obtained from E- and H-formulations with the same meshes, the accuracy improvement in the solution is analyzed.
In the study, the E- and H-formulations for FEM are derived and their corresponding variational forms are described. The numerical errors of FEM using E- and H-formulation are also discussed. Some numerical results are presented to demonstrate the advantages of the finite element method by averaging the results obtained from E- and H-formulations with the same meshes. From our analysis, the accuracy of the S11 calculated with FEM can be dramatically improved for the same mode at the same port by taking the average from both E- and H-formulations with the same meshes. For scattering coefficients due to different modes or different ports, the results by dual formulations can yield a measure of the error range, but taking average does not necessarily improve the accuracy significantly.
Another issue of interest in the dissertation is the transition design among waveguide and various planar transition lines. For waveguide to planar circuit transition, a new transition mechanism is proposed. The transition mechanism is based on the concept of tapered slot antenna and E-plane probe coupling. The design of the proposed transition mechanism is investigated in detail. Parameters of the new tapered slot probe are studied by numerical simulation.
The newly developed tapered CPS probe is applied to different planar circuit to waveguide transition design, including slotline-to-waveguide, microstrip-to- waveguide and CPW-to-waveguide. The method and procedure to design the transitions are investigated. The X-band and Ka-band transition design is demonstrated by numerical simulation and some transitions have also been fabricated and verified by measurement results. The characteristics of the transitions exhibit advantages of broad bandwidth, compact size, easy integration, low fabrication cost, and high reliability.
Finally, a new broadband microstrip-to-CPW transition based on microstrip electrical field and CPW magnetic field resonant coupling is proposed. The design procedure is investigated in detail and the equivalent circuit model is also described. The C-band and Ka-band transition are designed by numerical simulation and the C-band transition is also verified by measurement result. The features of this transitions are broad bandwidth, easy fabrication and no via or bonded-wire. The features will provide the transition a wide range of application in MIC/MMIC circuits.

Cover
Contents
Chapter 1 Introduction
1.1 RESEARCH MOTIVATIONS
1.2 LITERATURE SURVEY
1.3 CONTRIBUTIONS
1.4 CHAPTER OUTLINES
Chapter 2 Finite Element Method for Waveguide Discontinuity Problems
2.1 E- AND H-FORMULATIONS
2.2 EDGE-BASED TETRAHEDRAL FEM
2.3 NUMERICAL DISCRETIZATION ERRORS
Chapter 3 Accuracy Improvement by Dual E- and H- Formulations
3.1 1-D HOMOGENEOUS WAVEGUIDE
3.2 ACCURACY IMPROVEMENT FOR 3-D PROBLEM
3.3 WAVEGUIDE DISCONTINUITY PROBLEMS
3.4 SUMMARY
Chapter 4 Planar Circuit to Waveguide Transition with Tapered CPS Probe
4.1 PLANAR CIRCUIT TO WAVEGUIDE TRANSITION MECHANISM
4.2 TRANSITION PROFILE DESIGN FOR TRANSITION
4.3 PARAMETERS STUDY
4.4 SUBSTRATE EFFECTS
4.5 SLOTLINE-TO-WAVEGUIDE TRANSITION DESIGN
4.6 SUMMARY
Chapter 5 Microstrip Line and CPW to Waveguide Transitions by Tapered CPS Probe
5.1 MICROSTRIP-TO-WAVEGUIDE TRANSITION
5.2 CPW-TO-WAVEGUIDE TRANSITION
5.3 SUMMARY
Chapter 6 New Broadband Microstrip-to-CPW Transitions
6.1 TRANSITION DESIGN AND EQUIVALENT-CIRCUIT MODEL
6.2 SIMULATION AND MEASUREMENT RESULTS
6.3 SUMMARY
Chapter 7 Conclusions
References
Publications List

References
[1] Jianming Jin, The Finite Element Method in Electromagnetics. New York: John Wiley & Sons, Inc, pp. 11-32, 1993.
[2] P. Silvester, “A general high-order finite-element waveguide analysis problem,” IEEE Trans. Microwave Theory Tech., vol. 17, pp. 204-210, April 1969.
[3] N. A. Golias, A. G. Papagiannakis, and T. D. Tsiboukis, "Efficient mode analysis with edge element and 3-D adaptive refinement," IEEE Trans. Microwave Theory Tech., vol. 42, pp. 99-106, Jan. 1994.
[4] Ü. Pekel and R. Lee, "An a posteriori error reduction scheme for the three-dimension finite element solution of Maxwell's equations," IEEE Trans. Microwave Theory Tech., vol. 43, pp. 421-427, Feb. 1995.
[5] Hewlett Packard, HP High Frequency Structure Simulator 5.5.
[6] Ansoft, Ansoft High Frequency Structure Simulator 7.3.
[7] R. Lee and A. C. Cangellaris, "A study of discretization error in the finite element approximation of wave solutions," IEEE Trans. Microwave Theory Tech., vol. 40, pp. 542-549, May 1992.
[8] S. Selleri and M. Zoboli, "An improved finite element method formulation for the analysis of nonlinear anisotropic dielectric waveguides," IEEE Trans. Microwave Theory Tech., vol. 43, pp. 887-892, April 1995.
[9] B. M. Dillon and J. P. Webb, "A comparison of formulations for the vector finite element analysis of waveguides," IEEE Trans. Microwave Theory Tech., vol. 42, pp. 308-316, Feb. 1994.
[10] R. B. Wu, "A wideband waveguide transition design with modified dielectric transformer using edge-based tetrahedral finite-element analysis," IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1024-1031, July 1996.
[11] A. Bossavit and I. Mayergoyz, "Edge-element for scattering problems," IEEE Trans. on Magnetic, vol. 25, pp. 2816-2821, July 1989.
[12] J. F. Lee, D. K. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Trans. Microwave Theory Tech., vol. 35, pp. 1262-1271, Aug. 1991.
[13] P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers. New York: Cambridge University Press, pp.47-50, 1990.
[14] A Bayliss, C. I. Goldstein, and E. Turkel, “On accuracy conditions for the numerical computation of waves,” NASA ICASE, pp. 84-83, Aug. 1984.
[15] R. Mullen and T. Belytschko, “Dispersion analysis of finite element semidiscretization of the two-dimension wave equation,” International Journal for Numerical Methods in Engineering, vol. 18, pp. 11-29, 1982.
[16] R. Lee and A. C. Cangellaris, “A study of discretization error in the finite element approximation of wave solutions,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 542-549, May 1992.
[17] D. F. Watson, “Computing the n-dimensional delaunay tessellation with applications to voronoi polytopes,” Computer, pp. 48-57, 1977.
[18] C. J. Verner and J. R. Hoefer, "Quarter-wave matching of waveguide to fin line transitions," IEEE Trans. Microwave Theory Tech., vol. 32, pp. 1645-1648, Dec. 1984.
[19] J. S. Izadian and S. M. Izadian, Microwave Transition Design. London: Artech House, pp. 53-64, 1988.
[20] K. C. Gupta, R. garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines. London: Artech House, pp. 360-370, 1996.
[21] S. S. Moochalla and C. An, “Ridge waveguide used in microstrip transition,” Microwaves RF, pp. 149-153, Mar. 1984.
[22] D. R. Singh and C. R. Seashore, “Straightforward approach produces broadband transitions,” Microwaves RF, pp. 113-118, Sept. 1984.
[23] T. Q. Ho and Y. C. Shih, “Spectral-domain analysis of E-plane waveguide to microstrip transitions,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 388-392, Feb. 1989.
[24] L. J. Lavedan, “Design of waveguide-to-microstrip transition specially suited to millimeter-wave applications,” Electronics Letters, vol. 13, pp. 604-605, Sept. 1977.
[25] F. J. Villegas, D. I. Stones, and H. A. Hung, “A novel waveguide-to-microstrip transition for millimeter-wave module applications”, IEEE Trans. Microwave Theory Tech., vol. 47, pp. 48-55, Jan. 1999.
[26] W. Grapher, B. Hudler, and W. Menzel, “Microstrip to waveguide transition compatible with MM-wave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1842-1843, Sept. 1994.
[27] N. Kaneda, Y. Qian, and T. Itoh, “A broadband Microstrip-to-waveguide transition using quasi-Yagi antenna,” IEEE Trans. Microwave Theory Tech., vol.47, pp. 2562-2567, Dec. 1999.
[28] G. E. Ponchak and R. N. Simons, “A new rectangular waveguide to coplanar waveguide transition,” IEEE MTT-S Int. Microwave Symp. Dig., Dallas, TX, vol.1, pp. 491-492, May 1990.
[29] G. C. Dalman, “New waveguide-to-coplanar waveguide transition for centimeter and millimeter wave applications,” Electronics Letters, vol. 26, pp. 830-831, June 1990.
[30] E. M. Godshalk, “A V-band wafer probe using ridge-trough waveguide,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 2218-2228, Dec. 1991.
[31] J. de Mingo, A. Moliner, and A. Comeron, “Waveguide-to-coupled fin-line transition in Ka band,” IEEE Microwave Guided Wave Lett., vol. 6, pp. 363-365, Oct. 1996.
[32] W. Simon, M. Werthen, and I. Wolff, “A novel coplanar transmission line to rectangular waveguide transition,” IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, vol.1, pp. 257-260, June 1998.
[33] R. N. Simons and S. R. Taub, “New coplanar waveguide to rectangular waveguide end launcher,” Electronics Letters, pp. 1138-1139, June 1992
[34] N. Kaneda, Y. Qian, and T. Itoh, “A broadband CPW-to-waveguide transition using quasi-Yagi antenna,” IEEE MTT-S Int. Microwave Symp. Dig., Boston, vol.2, pp. 617-620, June 2000.
[35] B. Golja, H. B. Sequeira, and S. Duncan, “A coplanar-to-microstrip transition for W-band circuit fabrication with 100-pm-thick GaAs wafers,” IEEE Microwave Guided Wave Lett., vol.3, pp. 1272-1282 Feb. 1993.
[36] H. Jin, R. Vahldieck, J. Huang, and P. Russer, “Rigorous analysis of mixed transmission line interconnects using the frequency-domain TLM method,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 2248-2255, Dec. 1993.
[37] T. J. Ellis, J-P, Raskin, L. P. B. Katehi, and G. M. Rebeiz, “A wideband CPW-to-micostrip transition for millimeter-wave packaging,” IEEE MTT-S Int. Microwave Symp. Dig., pp.629-632, 1999.
[38] G. P. Gauthier, L. P. Katehi, and G. M. Rebeiz, “W-band finite ground coplanar waveguide (FGCPW) to microstrip line transition,” IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, pp.107-109, 1998.
[39] A. Bossavit, "Solving Maxwell's equations in a closed cavity and the question of spurious modes," IEEE Trans. on Magnetic, vol. 25, pp. 702-705, Mar. 1990.
[40] K. Ise, K. Inoue, and M. Koshiba, "Three-dimensional finite-element method with edge-elements for electromagnetic waveguide discontinuities," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1289-1295, Aug. 1991.
[41] E. Hinton and D. R. J. Owen, Finite Element Programming. New York: Academic Press, pp. 170-206, 1977.
[42] R. B. Wu and C. H. Chen, "On the variational reaction theory for dielectric waveguides," IEEE Trans. Microwave Theory Tech., vol. 33, pp. 477-483, June 1985.
[43] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., vol. 43, pp. 1460-1463, Dec. 1995.
[44] K. Ise, K. Inoue, and M. Koshiba, "Three-dimension finite-element method with edge elements for electromagnetic waveguide discontinuities," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1289-1295, Aug. 1991.
[45] K. F. Lee and W. Chen, Advances in Microstrip and Printed Antennas. New York: John Wiley & Sons, chapter 9, pp.443-514, 1997.
[46] K. C. Gupta, R. garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines. London: Artech House, pp. 305-313, 1996.
[47] B. Schüppert, “Microstrip/slotline transitions: modeling and experimental investigation,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1272-1282, Aug. 1988.
[48] C. H. Ho, L. Fan and K. Chang, “Broad-band uniplanar hybrid-ring and branch-line couplers” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 2116-2125, Dec. 1993.
[49] J. Chramiec, “Reactances of slotline short and open circuits on alumina substrate,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 1638-1641, Oct. 1989.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊