|
References [1] Jianming Jin, The Finite Element Method in Electromagnetics. New York: John Wiley & Sons, Inc, pp. 11-32, 1993. [2] P. Silvester, “A general high-order finite-element waveguide analysis problem,” IEEE Trans. Microwave Theory Tech., vol. 17, pp. 204-210, April 1969. [3] N. A. Golias, A. G. Papagiannakis, and T. D. Tsiboukis, "Efficient mode analysis with edge element and 3-D adaptive refinement," IEEE Trans. Microwave Theory Tech., vol. 42, pp. 99-106, Jan. 1994. [4] Ü. Pekel and R. Lee, "An a posteriori error reduction scheme for the three-dimension finite element solution of Maxwell's equations," IEEE Trans. Microwave Theory Tech., vol. 43, pp. 421-427, Feb. 1995. [5] Hewlett Packard, HP High Frequency Structure Simulator 5.5. [6] Ansoft, Ansoft High Frequency Structure Simulator 7.3. [7] R. Lee and A. C. Cangellaris, "A study of discretization error in the finite element approximation of wave solutions," IEEE Trans. Microwave Theory Tech., vol. 40, pp. 542-549, May 1992. [8] S. Selleri and M. Zoboli, "An improved finite element method formulation for the analysis of nonlinear anisotropic dielectric waveguides," IEEE Trans. Microwave Theory Tech., vol. 43, pp. 887-892, April 1995. [9] B. M. Dillon and J. P. Webb, "A comparison of formulations for the vector finite element analysis of waveguides," IEEE Trans. Microwave Theory Tech., vol. 42, pp. 308-316, Feb. 1994. [10] R. B. Wu, "A wideband waveguide transition design with modified dielectric transformer using edge-based tetrahedral finite-element analysis," IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1024-1031, July 1996. [11] A. Bossavit and I. Mayergoyz, "Edge-element for scattering problems," IEEE Trans. on Magnetic, vol. 25, pp. 2816-2821, July 1989. [12] J. F. Lee, D. K. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Trans. Microwave Theory Tech., vol. 35, pp. 1262-1271, Aug. 1991. [13] P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers. New York: Cambridge University Press, pp.47-50, 1990. [14] A Bayliss, C. I. Goldstein, and E. Turkel, “On accuracy conditions for the numerical computation of waves,” NASA ICASE, pp. 84-83, Aug. 1984. [15] R. Mullen and T. Belytschko, “Dispersion analysis of finite element semidiscretization of the two-dimension wave equation,” International Journal for Numerical Methods in Engineering, vol. 18, pp. 11-29, 1982. [16] R. Lee and A. C. Cangellaris, “A study of discretization error in the finite element approximation of wave solutions,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 542-549, May 1992. [17] D. F. Watson, “Computing the n-dimensional delaunay tessellation with applications to voronoi polytopes,” Computer, pp. 48-57, 1977. [18] C. J. Verner and J. R. Hoefer, "Quarter-wave matching of waveguide to fin line transitions," IEEE Trans. Microwave Theory Tech., vol. 32, pp. 1645-1648, Dec. 1984. [19] J. S. Izadian and S. M. Izadian, Microwave Transition Design. London: Artech House, pp. 53-64, 1988. [20] K. C. Gupta, R. garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines. London: Artech House, pp. 360-370, 1996. [21] S. S. Moochalla and C. An, “Ridge waveguide used in microstrip transition,” Microwaves RF, pp. 149-153, Mar. 1984. [22] D. R. Singh and C. R. Seashore, “Straightforward approach produces broadband transitions,” Microwaves RF, pp. 113-118, Sept. 1984. [23] T. Q. Ho and Y. C. Shih, “Spectral-domain analysis of E-plane waveguide to microstrip transitions,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 388-392, Feb. 1989. [24] L. J. Lavedan, “Design of waveguide-to-microstrip transition specially suited to millimeter-wave applications,” Electronics Letters, vol. 13, pp. 604-605, Sept. 1977. [25] F. J. Villegas, D. I. Stones, and H. A. Hung, “A novel waveguide-to-microstrip transition for millimeter-wave module applications”, IEEE Trans. Microwave Theory Tech., vol. 47, pp. 48-55, Jan. 1999. [26] W. Grapher, B. Hudler, and W. Menzel, “Microstrip to waveguide transition compatible with MM-wave integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1842-1843, Sept. 1994. [27] N. Kaneda, Y. Qian, and T. Itoh, “A broadband Microstrip-to-waveguide transition using quasi-Yagi antenna,” IEEE Trans. Microwave Theory Tech., vol.47, pp. 2562-2567, Dec. 1999. [28] G. E. Ponchak and R. N. Simons, “A new rectangular waveguide to coplanar waveguide transition,” IEEE MTT-S Int. Microwave Symp. Dig., Dallas, TX, vol.1, pp. 491-492, May 1990. [29] G. C. Dalman, “New waveguide-to-coplanar waveguide transition for centimeter and millimeter wave applications,” Electronics Letters, vol. 26, pp. 830-831, June 1990. [30] E. M. Godshalk, “A V-band wafer probe using ridge-trough waveguide,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 2218-2228, Dec. 1991. [31] J. de Mingo, A. Moliner, and A. Comeron, “Waveguide-to-coupled fin-line transition in Ka band,” IEEE Microwave Guided Wave Lett., vol. 6, pp. 363-365, Oct. 1996. [32] W. Simon, M. Werthen, and I. Wolff, “A novel coplanar transmission line to rectangular waveguide transition,” IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, vol.1, pp. 257-260, June 1998. [33] R. N. Simons and S. R. Taub, “New coplanar waveguide to rectangular waveguide end launcher,” Electronics Letters, pp. 1138-1139, June 1992 [34] N. Kaneda, Y. Qian, and T. Itoh, “A broadband CPW-to-waveguide transition using quasi-Yagi antenna,” IEEE MTT-S Int. Microwave Symp. Dig., Boston, vol.2, pp. 617-620, June 2000. [35] B. Golja, H. B. Sequeira, and S. Duncan, “A coplanar-to-microstrip transition for W-band circuit fabrication with 100-pm-thick GaAs wafers,” IEEE Microwave Guided Wave Lett., vol.3, pp. 1272-1282 Feb. 1993. [36] H. Jin, R. Vahldieck, J. Huang, and P. Russer, “Rigorous analysis of mixed transmission line interconnects using the frequency-domain TLM method,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 2248-2255, Dec. 1993. [37] T. J. Ellis, J-P, Raskin, L. P. B. Katehi, and G. M. Rebeiz, “A wideband CPW-to-micostrip transition for millimeter-wave packaging,” IEEE MTT-S Int. Microwave Symp. Dig., pp.629-632, 1999. [38] G. P. Gauthier, L. P. Katehi, and G. M. Rebeiz, “W-band finite ground coplanar waveguide (FGCPW) to microstrip line transition,” IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, pp.107-109, 1998. [39] A. Bossavit, "Solving Maxwell's equations in a closed cavity and the question of spurious modes," IEEE Trans. on Magnetic, vol. 25, pp. 702-705, Mar. 1990. [40] K. Ise, K. Inoue, and M. Koshiba, "Three-dimensional finite-element method with edge-elements for electromagnetic waveguide discontinuities," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1289-1295, Aug. 1991. [41] E. Hinton and D. R. J. Owen, Finite Element Programming. New York: Academic Press, pp. 170-206, 1977. [42] R. B. Wu and C. H. Chen, "On the variational reaction theory for dielectric waveguides," IEEE Trans. Microwave Theory Tech., vol. 33, pp. 477-483, June 1985. [43] Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., vol. 43, pp. 1460-1463, Dec. 1995. [44] K. Ise, K. Inoue, and M. Koshiba, "Three-dimension finite-element method with edge elements for electromagnetic waveguide discontinuities," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1289-1295, Aug. 1991. [45] K. F. Lee and W. Chen, Advances in Microstrip and Printed Antennas. New York: John Wiley & Sons, chapter 9, pp.443-514, 1997. [46] K. C. Gupta, R. garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines. London: Artech House, pp. 305-313, 1996. [47] B. Schüppert, “Microstrip/slotline transitions: modeling and experimental investigation,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1272-1282, Aug. 1988. [48] C. H. Ho, L. Fan and K. Chang, “Broad-band uniplanar hybrid-ring and branch-line couplers” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 2116-2125, Dec. 1993. [49] J. Chramiec, “Reactances of slotline short and open circuits on alumina substrate,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 1638-1641, Oct. 1989.
|