跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/23 14:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:杜俊賢
研究生(外文):Jiun-Shian Du
論文名稱:二維遞迴式數位濾波器之穩定性與晶格系統架構之理論及設計
論文名稱(外文):The Stability Theory and Design of Two-Dimensional Recursive Digital Filters and Recursive Digital Lattice Filters
指導教授:李枝宏李枝宏引用關係
指導教授(外文):Ju-Hong Lee
口試委員:貝蘇章周裕達曾建誠祁忠勇馮世邁杭學鳴林源倍王晉良
口試委員(外文):Soo-Chang PeiYue-Dar JouChien-Cheng TsengChong-Yung ChiSee-May PhoongHsueh-Ming HangYuan-Pei LinChin-Liang Wang
口試日期:2016-08-01
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:162
中文關鍵詞:數位全通濾波器四分之一象限有限輸入有限輸出穩定性解開相位響應二維遞迴式濾波器非對稱半平面晶格結構
外文關鍵詞:Digital allpass filter (DAF)quarter-plane (QP)BIBO stabilityunwrapped phase response2-D recursive filternonsymmetric half-plane (NSHP)lattice structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二維(2-D)數位全通濾波器(DAF)擁有只在相位上變化的性質,並且已用於補償相位失真的訊號。它的結構有許多令人期望的優點,例如:低硬體複雜度與低的係數量化誤差。它也可以被用於設計多範圍的濾波功能。在本論文中,我們提出二維因果且實係數或負數係數皆被限制於第一象限(QP)之數位全通濾波器的單調遞減相位響應性質。在實係數的情形下,我們也證明出之前文獻所提出的有限輸入有限輸出(BIBO)之相位穩定性條件只是對於QP數位全通濾波器的充分條件,而此穩定性條件對於二維可分離(separable)數位全通濾波器是充分且必要條件。相對於之前文獻所提出的相位穩定性條件,我們提出的相位響應穩定性性質擁有增加相位設計自由度的優點。我們提出的相位響應穩定性性質有一個重要的應用,即是可用來選擇適當且期望的相位規格來設計出穩定的QP數位全通濾波器。
二維非對稱半平面(NSHP)數位全通濾波器擁有較一般化的因果特性,且效能比二維QP數位全通濾波器來的要好。因此,我們也提出二維因果且實係數或負數係數皆被限制於NSHP支撐區域之數位全通濾波器的相位響應性質來決定BIBO穩定性。再者,我們也考慮二維NSHP數位全通濾波器之分子多項式對於穩定性的影響。我們提出的相位響應穩定性性質有許多應用。其中一個重要的應用,即是可用來選擇適當且期望的相位規格來設計出穩定的NSHP數位全通濾波器。我們也提出一個特徵濾波器(eignfilter)設計方法來設計二維NSHP數位全通濾波器來套用上述的應用。
一維(1-D)晶格(lattice)結構數位濾波器擁有低通帶敏感度與對量化誤差的抗性。它的模組化性質更造就了工業上的應用。另外,一維晶格結構數位濾波器對於一維直接形式(direct form)數位濾波器來說有較低的執行複雜度。一維直接形式數位全通濾波器的係數與一維晶格結構數位全通濾波器的反射係數有著一對一映射的性質,然而二維晶格結構數位全通濾波器並無法擁有這個特性。因此,我們提出一個二維晶格架構來實現有一般化因果特性的二維數位全通濾波器。我們採用四種基本晶格區塊來實現擁有類似NSHP係數支撐區域的楔形係數支撐區域之二維數位全通濾波器。我們也提出此二維晶格數位全通濾波器的兩種變異形式之二維晶格結構。我們利用Rosser狀態空間模型來驗證我們所提出的二維晶格數位全通濾波器之最小實現性質。我們提出一個最小平方設計方法(least-squares design)與一個最小最大誤差設計方法(minimax design)來求解所提出二維晶格數位全通濾波器架構產生的非線性最佳化問題。我們所提出二維晶格數位全通濾波器架構的新穎性在於不但繼承了一維Gray-Markel晶格數位全通濾波器架構的優點並且擁有比現存所有二維晶格數位全通濾波器架構的效能要好的優點。接著,我們提出一個並排連結(parallel-combination)結構並使用我們所提出的二維晶格數位全通濾波器架構來設計一般的二維遞迴式濾波器。此提出的二維遞迴式濾波器的新穎性在於不但繼承了所提出二維晶格數位全通濾波器的優秀特性並且擁有比現存使用直接形式NSHP數位全通濾波器來建構的二維遞迴式濾波器的效能要好的優點。

A two-dimensional (2-D) digital allpass filter (DAF) has a property of varying only phase with constant magnitude and it has mainly been used as a phase compensator for distorted signals. It is a structure that has some desirable attributes such as low complexity and low coefficient quantization error. It also can be used to design a wide range of filtering functions. In this doctoral dissertation, we present the monotone phase-response property of a two-dimensional (2-D) causal digital allpass filter (DAF) with real coefficients or complex coefficients in the quarter-plane (QP) support region. Regarding the circumstance of real coefficients, we also prove that the previously proposed bounded-input bounded-output (BIBO) stability criterion on the viewpoint of unwrapped phase is necessary and sufficient for 2-D separable DAFs, but is only sufficient for QP DAFs. The resultant property possesses the advantage of increasing the freedom of phase design over the previously proposed one. A remarkable application of the presented property is choosing an appropriate specification for the desired phase response of a 2-D QP DAF design.
A 2-D nonsymmetric half-plane (NSHP) recursive DAF possesses more general causality and performs better than a 2-D quarter-plane (QP) recursive DAF. Hence, we also present the phase-response property for the BIBO stability of a 2-D causal recursive DAF with NSHP support region. Both cases of filters with real coefficients and complex coefficients are explored. Moreover, the effect of the numerator polynomial of a 2-D NSHP DAF on stability is also considered. The presented phase-response property has several applications. A remarkable application is that it can be utilized to enforce stability for a 2-D NSHP DAF design by choosing an appropriate phase specification. The eigenfilter design of 2-D NSHP DAFs for this application is also presented.
The 1-D lattice filter structure exhibits the attractive advantages of low passband sensitivity and robustness to quantization error. The modularity of this structure makes industrial application. Additionally, 1-D digital lattice filter structure requires lower computational cost than 1-D direct form digital filter. The filter coefficients of 1-D direct-form allpass filter and the reflection coefficients of 1-D lattice allpass filter have a one-to-one mapping relationship. However, 2-D lattice allpass structures always do not have this relationship. Hence, we present a lattice structure for the realization of 2-D recursive DAFs with general causality. We employ four basic lattice sections to realize 2-D recursive DAFs with wedge-shaped coefficient support region like a NSHP support region. Two variations of the 2-D lattice structure are also presented. We use the Roesser state space model to verify the minimal realization of the proposed 2-D recursive lattice DAF. We present a least-squares design technique and a minimax design technique to solve the nonlinear optimization problems of the proposed 2-D lattice DAF structure. The novelty of the presented lattice structure is that it not only inherits the desirable attributes of 1-D Gray-Markel lattice allpass structure but also possesses the advantage of better performance over the existing 2-D lattice allpass structures. Then, we present a parallel-combination structure composed of the 2-D lattice DAFs for the design of 2-D recursive filters. The novelty of the 2-D recursive filter is that it not only inherits the desirable attributes of lattice filters but also possesses the advantage of better performance over the 2-D recursive NSHP filters.

摘要 VII
Abstract IX
Chapter 1 Motivation 1
Chapter 2 The Phase Characteristics for The Stability of 2-D
Quarter-Plane Recursive Digital Allpass Filters 3
2.1 Introduction 3
2.2 The Poles-Examining Stability Theorem of 2-D QP Recursive Filters 6
2.3 Effect of The Numerator Polynomial of A 2-D QP DAF on Stability 7
2.4 The 2-D QP DAF Stability Criteria on Unwrapped Phase 9
2.5 Computer Simulation Results 15
2.6 Conclusion 21

Chapter 3 The Phase Characteristics for The Stability of 2-D
Nonsymmetric Half-Plane Digital Allpass Filters 23
3.1 Introduction 23
3.2 Zeros-Examining Stability Theorems of 2-D NSHP Recursive Filters 26
3.3 Effect of The Numerator Polynomial of A 2-D NSHP DAF on Stability 32
3.4 Stability Criteria of 2-D NSHP DAFs on Unwrapped Phase 35
3.5 Applications 41
3.5.1 Design of Stable 2-D NSHP DAFs 41
3.5.2 Estimate The Bounds of The Nominal Group Delay Along The
Axis on The Design of 2-D NSHP Allpass Equalizers 45
3.5.3 Stability Test of 2-D NSHP DAFs 46
3.6 Computer Simulation Results 47
3.6.1 Phase Approximation of Real-Coefficient NSHP DAF 49
3.6.2 Phase Approximation of Complex-Coefficient NSHP DAF 54
3.6.3 2-D Phase Equalization Using The Bounds of The Nominal Group
Delay Along The Axis 59
3.7 Conclusion 60

Chapter 4 Lattice Structure Realization for The Design of 2-D
Digital Allpass Filters with General Causality 63
4.1 Introduction 63
4.2 Lattice Structure Realization of 2-D Allpass Filters with General Causality 67
4.3 Stability Constraint with Respect to The Reflection Coefficients 71
4.4 State Space Realization 76
4.5 Least-Squares Design Technique 79
4.6 Minimax Design Technique 83
4.7 Computer Simulation Results 88
4.7.1 Phase Approximation Using Least-Squares Design Technique 89
4.7.2 Phase Approximation Using Minimax Design Technique 92
4.8 Conclusion 95

Chapter 5 Design of 2-D Recursive Digital Filters Using 2-D
Lattice Allpass Filters with General Causality 97
5.1 Introduction 97
5.2 The 2-D Lattice DAF with General Causality 101
5.2.1 The Structure 101
5.2.2 The Stability 103
5.2.3 The Crucial Points 103
5.3 Structure of the 2-D Recursive Filter Using The 2-D Lattice DAFs
with General Causality 105
5.3.1 Structure of The 2-D Recursive Digital Filter Using The 2-D
Lattice DAFs 106
5.3.2 Application Example of The Proposed Structure in Designing
The 2-D ALP Fan Filter 107
5.4 Least-Squares Design Technique 109
5.5 Minimax Design Technique 113
5.6 Computer Simulation Results 118
5.6.1 Least-Squares Design of A 2-D ALP Recursive Fan Filter 119
5.6.2 Minimax Design of A 2-D ALP Recursive Fan Filter 122
5.7 Conclusion 125

Chapter 6 Conclusions 127

Appendix A:Group Delay Function Along The Axis 129
Appendix B:Partial Derivatives for Computing The Jacobian Matrix in (4.33) 131
Appendix C:Partial Derivatives for Computing The Jacobian Matrix in (5.22) 139
Appendix D:Stability Equating by Linearly Mapping A Sequence with Wedge
Support into Another Sequence with First-Quadrant Support 149
References 153

[1] P. P. Vaidyanathan, S. K. Mitra, and Y. Neuvo, “A new approach to the realization of low sensitivity IIR digital filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol.34, no. 2, pp. 350-361, Apr. 1986.
[2] P. P. Vaidyanathan, P. Regalia, and S. K. Mitra, “Design of doubly complementary IIR digital filters using a single complex allpass filter, with multirate applications,”IEEE Trans. Circuits and Systems, vol. 34, no. 4, pp. 378-389, Apr. 1987.
[3] M. Ikehara, M. Funaishi, and H. Kuroda, “Design of complex all-pass networks using Remez algorithm,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 39, no. 8, pp. 549-556, Aug. 1992.
[4] S. S. Lawson and A. Klouche-Djedid, “Technique for design of two-channel approximately linear phase QMF bank and its application to image compression,” IEE Proc. – Vision, Image and Signal Processing, vol. 148, no. 2, pp. 85-92, Apr. 2001.
[5] J.-H. Lee and Y.-H. Yang, “Design of two-channel linear-phase QMF banks based on real IIR allpass filters,” IEE Proc. – Vision, Image and Signal Processing, vol.150, no.5, pp. 331-338, Oct. 2003.
[6] M. P. Ekstrom and J. W. Woods, “Two-dimensional spectral factorization with applications in recursive digital filtering,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 24, no. 2, pp. 115-128, Apr. 1976.
[7] M. P. Ekstrom, R. E. Twogood, and J. W. Woods, “Two-dimensional recursive filter design – A spectral factorization approach,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 28, no. 1, pp. 16-26, Feb. 1980.
[8] J. W. Woods, J.-H. Lee, and I. Paul, “Two-dimensional IIR filter design with magnitude and phase error criteria,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 31, no. 4, pp. 886-894, Aug. 1983.
[9] J.-H. Lee and Y.-M. Chen, “A new method for the design of two-dimensional recursive digital filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, no. 4, pp. 589-598, Apr. 1988.
[10] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, Englewood Cliffs, New Jersey, 1993.
[11] L. R. Rabiner and B. Gold, Theory and Application of DigitaI Signal Processing. Englewood Cliffs, NJ: hntice, Hall, 1975.
[12] S.-C. Pei and J.-J. Shyu, “Eigenfilter design of 1-D and 2-D IIR digital all- pass filters,” IEEE Trans. Signal Processing, vol. 42, no. 4, pp. 966-968, Apr. 1994.
[13] Z. Jing, “A new method for digital all-pass filter design,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 1557-1564, Nov. 1987.
[14] T. Q. Nguyen, T. I. Laakso and R. D. Koilpillai, “Eigenfilter approach for the design of allpass filters approximating a given phase response,” IEEE Trans. Signal Processing, vol. 42, no. 9, pp. 2257-2263, Sep. 1994.
[15] S.-C. Pei and C.-C. Tseng, “IIR multiple notch filter design based on allpass filter,” IEEE Trans. Circuits Syst. II, CASII-44, no. 2, pp. 133-136, Feb. 1997.
[16] C.-C. Tseng and S.-C. Pei, “Complex notch filter design using allpass filter,” Electronics Letters, vol. 34, no. 10, pp. 966-967, May. 1998.
[17] J.-J. Shyu, S.-C. Pei, C.-H. Chan, “Minimax phase error design of allpass variable fractional-delay digital filters by iterative weighted least-squares method,” Signal Processing, vol. 89, pp. 1774–1781, 2009.
[18] Y.-H. Yang and J.-H. Lee, “Design of 2-D recursive digital filters using nonsymmetric half-plane allpass filters,” IEEE Trans. Signal Processing, vol. 55, no. 12, pp. 5604-5618, Dec. 2007.
[19] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1984.
[20] J. L. Shanks, S. Treitel, and J. H. Justice, “Stability and synthesis of two- dimensional recursive filters,” IEEE Trans. Audio and Electroacoustics, AU-20, no. 2, pp. 115-128, June 1972.
[21] N. K. Bose, Applied multidimensional systems theory, Van Nostrand Reinhold Co., 1982.
[22] D. Goodman, “Some stability properties of two-dimensional linear shift-invariant digital filters,” IEEE Trans. Circuits and Systems, vol. 24, no. 4, pp. 201–208, 1977.
[23] L. M. Roytman, M. N. S. Swamy, G. Eichmann, “BIBO stability in the presence of nonessential singularities of the second kind in 2-D digital filters,” IEEE Trans. Circuits and Systems, vol. 34, no. 1, pp. 60–72, 1987.
[24] H. Toyoshima and S. Takahashi, “Design of stable 2-D recursive allpass filters using Hilbert transform,” International Conference on Image Processing and its Applicaions, Maastricht, pp. 559–562, Apr. 1992.
[25] S.-C. Pei, H.-S. Lin, “Two-dimensional partially differential cepstrum and its applications on filter stabilization and phase unwrapping,” IEEE Trans. Circuits and Systems I, vol. 58, no. 4, pp. 737–745, 2011.
[26] J. H. Justice and J. L. Shanks, ”Stability criterion for N-dimensional digital filters,” IEEE Trans. Automatic Control, AC-18, no. 3, pp. 284-286, June 1973.
[27] M. G. Strintzis, “Test of stability of multidimensional filters,” IEEE Trans. Circuits and Systems, vol. 24, no. 8, pp. 432–437, 1977.
[28] L. Li, L. Xu, Z. Lin, “Stability and stabilisation of linear multidimensional discrete systems in the frequency domain,” International Journal of Control, vol. 86, no. 11, pp. 1969–1989, 2013.
[29] S. Lawson, “The versatility of the allpass digital filter in 1-D and 2-D,” in IEE Colloquium on Digital Filters: An Enabling Technology, London, Apr. 1998, pp. 1/1–1/8.
[30] J.-H. Lee and Y.-H. Yang, “Two-channel parallelogram QMF banks using 2-D NSHP digital allpass filters,” IEEE Trans. Circuits and Systems I, vol. 57, no. 9, pp. 2498-2508, Sept. 2010.
[31] M. Lang and T. I. Laakso, “Simple and robust method for the design of allpass filters using least-squares phase error criterion,” IEEE Trans. Circuits Syst. II, vol. 41, no. 1, pp. 40–48, Jan. 1994.
[32] T. S. Huang, “Stability of two-dimensional recursive filters,” IEEE Trans. Audio and Electroacoustics, vol. 20, no. 2, pp. 158–163, Jun. 1972.
[33] J. S. Lim, Two-Dimensional Signal and Image Processing. Englewood Cliffs, New Jersey: Prentice-Hall, 1990.
[34] B. Choi, “A fundamental theorem of algebra, spectral factorization, and stability of two-dimensional systems,” IEEE Trans. Signal Processing, vol. 51, no. 3, pp. 853–863, Mar. 2003.
[35] B. Nobel and J. W. Daniel, Applied Linear Algebra. Englewood Cliffs, New Jersey: Prentice-Hall, 1977.
[36] M. S. Anderson and S. S. Lawson, “Design of 2-D allpass digital filters for delay equalisation,” in IEEE International Symposium on Circuits and Systems, vol. 2, London, 1994, pp. 217–220.
[37] S.-C. Pei and P.-H. Wang, “Maximally flat allpass fractional Hilbert transformers,” in IEEE International Symposium on Circuits and Systems, vol. 5, 2002, pp. 701–704.
[38] J.-H. Lee and Y.-H. Yang, “Minimax design of two-channel nonuniform-division filterbanks using IIR allpass filters,” IEEE Trans. Signal Processing, vol. 52, no. 11, pp. 3227–3240, Nov. 2004.
[39] I. Adler, N. Karmarkar, M. G. C. Resende, and G. Veiga, “An implementation of Karmarkar’s algorithm for linear programming,” Math. Programming, vol. 44, no. 1, pp. 297–335, May. 1989.
[40] A. H. Gray and J. D. Markel, “Digital lattice and ladder filter synthesis,” IEEE Trans. Audio and Electroacoustics, vol. 21, no. 6, pp. 491–500, Dec. 1973.
[41] P. P. Vaidyanathan, "Passive cascaded-lattice structures for low-sensitivity FIR filter design, with applications to filter banks," IEEE Trans. Circuits and Systems, vol. CAS-33, no. II, pp. 1045-1064, Nov. 1986.
[42] Y. C. Lim, “On the synthesis of IIR digital filters derived from single channel AR lattice network,” IEEE Trans. Acoust. Speech Signal Processing, vol. 32, no. 4, pp. 741–749, Aug. 1984.
[43] J.-H. Lee and Y.-H. Yang, “General lattice structures of 2-D recursive digital filters,” in IEEE International Symposium on Circuits and Systems, Seoul, Aug. 2011, pp. 1–4.
[44] G. E. Antoniou, “Realization of 2D reverse-lattice discrete filters,” in IEEE International Symposium on Circuits and Systems, Rome, May 2012, pp. 1–4.
[45] S.-Y. Kung, B. C. Levy, M. Morf, and T. Kailath, “New results in 2-D systems theory, part II: 2-D state space models – realization and the notions of controllability, observability and minimality,” Proc. IEEE, vol. 65, no. 6, pp. 945–961, Jun. 1977.
[46] G. E. Antoniou, “2-D lattice discrete filters: minimal delay and state space realization,” IEEE Signal Processing Letters, vol. 8, no. 1, pp. 23–25, Jan. 2001.
[47] D. D. Givone and R. P. Roesser, “Minimization of multidimensional linear iterative circuits,” IEEE Trans. Computer, vol. 22, pp. 673–678, Jul. 1973.
[48] G. E. Antoniou, “Minimal state space realization for all-pole and allzero lattice discrete 2d filter,” International Journal of Systems Science, vol. 33, no. 10, pp. 799–803, 2002.
[49] G. E. Antoniou, “On the realization of 2-d lattice ladder discrete filters,” Journal of the Circuits, Systems, and Computers, vol. 3, no. 5, pp. 1079–1083, 2004.
[50] T. L. Marzetta, A linear prediction approach to two-dimensional spectral factorization and spectral estimation. Ph.D. Thesis: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1978.
[51] G. E. Antoniou, “Generalized one-multiplier lattice discrete 2-D filters: minimal circuit and state space realization,” IEEE Trans. Circuits and Systems I, vol. 48, no. 2, pp. 215–218, Feb. 2001.
[52] T. L. Marzetta, “Two-dimensional linear prediction: autocorrelation arrays, minimum-phase prediction error filters, and reflection coefficient arrays,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 28, no. 6, pp. 725–733, Dec. 1980.
[53] D. B. Harris, Design and implementation of rational 2-D digital filters. Ph.D. Thesis: Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1979.
[54] A. H. Gray and J. D. Markel, “A normalized digital filter structure,” IEEE Trans. Acoust. Speech Signal Processing, vol. 23, no. 3, pp. 268–277, Jun. 1975.
[55] J. A. Nelder and R. Meade, “A simplex method for function minimization,”Comput. J., vol. 7, no. 4, pp. 308–313, 1965.
[56] F. S. Hiller and G. J. Lieberman, Introduction to Mathematical Programming.
New York: McGraw-Hill, 1991.
[57] H. Toyoshima, M. Ikehara, and S. Takahashi, “A new class of 2-D digital filters composed of allpass subfilters,” European Conference on Circuit Theory and Design, Brighton, UK, pp. 420-424, 5-8 Sept. 1989.
[58] M. S. Anderson and S. S. Lawson, “Direct design of approximately linear phase (ALP) 2-D digital filters,” Electronics Letters, vol. 29, no. 9, pp. 804–805, Apr. 1993.
[59] H. Safiri, M. Ahmadi, and V. Ramachandran, “Design of stable, causal 2-D digital filters using real coefficient 2-D allpass building blocks,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 44, no. 5, pp. 409-412, May 1997.
[60] A. Lee, M. Ahmadi, and R. S. Lashkari, “Design of stable 2-D recursive filters using power-of-two coefficients,” IEEE International Conference on Electronics, Circuits and Systems, Lisboa, Portugal, vol. 2 , pp. 409-412, 7-10 Sept. 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top