|
[1] S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, Y. Bin, A. Nainani, et al., "GeSn technology: Extending the Ge electronics roadmap," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 16.6.1-16.6.4. [2] Bruce Booth et al. (2013), "On-board optical interconnection", CTR III TEG Report, MIT Microphotonics Center. [3] Koester, S. J., et al. (2007), "Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications." Lightwave Technology, Journal of 25(1): 46-57. [4] A. Kah-Wee, L. Tsung-Yang, Y. Ming-Bin, F. Qing, S. Junfeng, L. Guo-Qiang, et al., "Low Thermal Budget Monolithic Integration of Evanescent-Coupled Ge-on-SOI Photodetector on Si CMOS Platform," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 16, pp. 106-113, 2010. [5] R. Braunstein, A. R. Moore, and F. Herman, "Intrinsic Optical Absorption in Germanium-Silicon Alloys," Physical Review, vol. 109, pp. 695-710, 02/01/ 1958. [6] Jerome Faist, "Optical properties of semiconductors," Eidgenossische Technische Hochshule Zurich, 2008. [7] Dyan Ali, "Silicon-Germanium Photodetectors for Optical Telecommunications," University of Maryland, College Park, 2012. [8] K. Hammani, M. A. Ettabib, A. Bogris, A. Kapsalis, D. Syvridis, M. Brun, et al., "Optical properties of silicon germanium waveguides at telecommunication wavelengths," Optics Express, vol. 21, pp. 16690-16701, 2013/07/15 2013. [9] Y. Kim, M. Yokoyama, N. Taoka, M. Takenaka, and S. Takagi, "Ge-rich SiGe-on-insulator for waveguide optical modulator application fabricated by Ge condensation and SiGe regrowth," Optics Express, vol. 21, pp. 19615-19623, 2013/08/26 2013. [10] WirthsS, GeigerR, N. von den Driesch, MusslerG, StoicaT, MantlS, et al., "Lasing in direct-bandgap GeSn alloy grown on Si," Nat Photon, vol. 9, pp. 88-92, 02//print 2015. [11] H.-Y. S. Koh, S.-L. Chen, P. B. Griffin, and J. D. Plummer, "High Quality Single-Crystal Laterally Graded SiGe on Insulator by Rapid Melt Growth," Electrochemical and Solid-State Letters, vol. 13, pp. H281-H283, August 1, 2010 2010. [12] S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, et al., "A 90nm CMOS integrated Nano-Photonics technology for 25Gbps WDM optical communications applications," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 33.8.1-33.8.3. [13] S. Gupta, "GERMANIUM-TIN (GESN) TECHNOLOGY," STANFORD UNIVERSITY, 2013. [14] D. Nam, D. Sukhdeo, A. Roy, K. Balram, S.-L. Cheng, K. C.-Y. Huang, et al., "Strained germanium thin film membrane on silicon substrate for optoelectronics," Optics Express, vol. 19, pp. 25866-25872, 2011/12/19 2011. [15] G. Capellini, G. Kozlowski, Y. Yamamoto, M. Lisker, C. Wenger, G. Niu, et al., "Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach," Journal of Applied Physics, vol. 113, p. 013513, 2013. [16] J. R. Jain, A. Hryciw, T. M. Baer, A. B. MillerDavid, M. L. Brongersma, and R. T. Howe, "A micromachining-based technology for enhancing germanium light emission via tensile strain," Nat Photon, vol. 6, pp. 398-405, 06//print 2012. [17] Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, et al., "Strong enhancement of direct transition photoluminescence with highly tensile-strained Ge grown by molecular beam epitaxy," Applied Physics Letters, vol. 98, p. 011111, 2011. [18] R. Ragan and H. A. Atwater, "Measurement of the direct energy gap of coherently strained SnxGe1−x/Ge(001) heterostructures," Applied Physics Letters, vol. 77, pp. 3418-3420, 2000. [19] Y.-H. Peng, H. H. Cheng, V. I. Mashanov, and G.-E. Chang, "GeSn p-i-n waveguide photodetectors on silicon substrates," Applied Physics Letters, vol. 105, p. 231109, 2014. [20] Y. Liu, M. D. Deal, and J. D. Plummer, "High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates," Applied Physics Letters, vol. 84, pp. 2563-2565, 2004. [21] M. Kurosawa, Y. Tojo, R. Matsumura, T. Sadoh, and M. Miyao, "Single-crystalline laterally graded GeSn on insulator structures by segregation controlled rapid-melting growth," Applied Physics Letters, vol. 101, p. 091905, 2012. [22] J. Wen, Z. Liu, L. Li, C. Li, C. Xue, Y. Zuo, et al., "Room temperature photoluminescence of Ge-on-insulator structures formed by rapid melt growth," Journal of Applied Physics, vol. 113, p. 143107, 2013. [23] Shu-Lu Chen, "Design and Process for Three-Dimensional Heterogeneous Integration," the Department of Electrical Engineering and the Committee on Graduate Studies of Stanford University, 2010. [24] T. Chih-Kuo, C. Ching-Hsiang, Y. Shih-Che, H. Kuang-Chien, N. Neil, and L. Ming-Chang, "GeSn waveguide photodetectors fabricated by rapid-melt-growth method," in Next-Generation Electronics (ISNE), 2015 International Symposium on, 2015, pp. 1-4. [25] R. W. Olesinski and G. J. Abbaschian, "The Ge−Sn (Germanium−Tin) system," Bulletin of Alloy Phase Diagrams, vol. 5, pp. 265-271, 1984/06/01 1984. [26] R. W. Olesinski and G. J. Abbaschian, "The Ge−Si (Germanium-Silicon) system," Bulletin of Alloy Phase Diagrams, vol. 5, pp. 180-183, 1984/04/01 1984. [27] R. W. Olesinski and G. J. Abbaschian, "The Si−Sn (Silicon−Tin) system," Bulletin of Alloy Phase Diagrams, vol. 5, pp. 273-276, 1984/06/01 1984. [28] E. Scheil, "Bemerkungen zur schichtkristallbildung," Zeitschrift für Metallkunde, vol. 34, pp. 70-72, 1942. [29] J.D. Plummer, M.D. Deal, P.B. Griffin, "Silicon VLSI Technology – Fundamentals, Practice and Modeling", Prentice Hall, 2000. [30] M. Xiong and A. V. Kuznetsov, "Comparison between Lever and Scheil Rules for Modeling of Microporosity Formation during Solidification," Flow, Turbulence and Combustion, vol. 67, pp. 305-323, 2001/12/01 2001. [31] J. Liu, Photonic Devices: Cambridge University Press, 2005. [32] M. Klingenstein, J. Kuhl, J. Rosenzweig, C. Moglestue, A. Hülsmann, J. Schneider, et al., "Photocurrent gain mechanisms in metal-semiconductor-metalphotodetectors," Solid-State Electronics, vol. 37, pp. 333-340, 2// 1994. [33] J. D. Hwang and E. H. Zhang, "Effects of a a-Si:H layer on reducing the dark current of 1310 nm metal–germanium–metal photodetectors," Thin Solid Films, vol. 519, pp. 3819-3821, 3/31/ 2011. [34] R. Matsumura, Y. Kai, H. Chikita, T. Sadoh, and M. Miyao, "Formation of Large Grain Ge Single Crystal on Insulating Substrate by Liquid-Solid Coexisting Annealing of a-Ge(Sn)," ECS Transactions, vol. 61, pp. 97-100, March 26, 2014 2014. [35] J. Liu, "Monolithically Integrated Ge-on-Si Active Photonics," Photonics, vol. 1, p. 162, 2014. [36] C. Wei-Ting, T. Chih-Kuo, C. Ku-Hung, L. Han-Din, K. Yimin, N. Na, et al., "Self-Aligned Microbonded Germanium Metal-Semiconductor-Metal Photodetectors Butt-Coupled to Si Waveguides," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 20, pp. 17-21, 2014. [37] F. Pezzoli, E. Bonera, E. Grilli, M. Guzzi, S. Sanguinetti, D. Chrastina, et al., "Raman spectroscopy determination of composition and strain in heterostructures," Materials Science in Semiconductor Processing, vol. 11, pp. 279-284, 10// 2008. [38] M. Abidin, T. Morshed, H. Chikita, Y. Kinoshita, S. Muta, M. Anisuzzaman, et al., "The Effects of Annealing Temperatures on Composition and Strain in SixGe1−x Obtained by Melting Growth of Electrodeposited Ge on Si (100)," Materials, vol. 7, p. 1409, 2014. [39] M. Miyao, T. Tanaka, K. Toko, and M. Tanaka, "Giant Ge-on-Insulator Formation by Si-Ge Mixing-Triggered Liquid-Phase Epitaxy," Applied Physics Express, vol. 2, Apr 2009. [40] S. J. Park, K. H. Kim, W. S. Sohn, J. H. Oh, J. Jang, S. H. Kang, et al., "Investigation of Micro-Structural Change Using Raman Spectroscopy During Ni Silicide Mediated Crystallization of Amorphous Silicon," Journal of the Korean Physical Society, vol. 42, pp. S466-471, 2003. [41] D. Kosemura, A. Ogura, K. Usuda, and M. Tomita, Stress Measurements in Si and SiGe by Liquid-Immersion Raman Spectroscopy: INTECH Open Access Publisher, 2012. [42] M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, et al., "GeSn p-i-n detectors integrated on Si with up to 4% Sn," Applied Physics Letters, vol. 101, p. 141110, 2012. [43] C. G. Littlejohns, M. Nedeljkovic, C. F. Mallinson, J. F. Watts, G. Z. Mashanovich, G. T. Reed, et al., "Next Generation Device Grade Silicon-Germanium on Insulator," Scientific Reports, vol. 5, p. 8288, 02/06/online 2015. [44] Y. Bogumilowicz, J.-P. Barnes, P. Holliger, D. Rouchon, N. Daval, J.-M. Hartmann, et al., "Ge Diffusion in Strained Si / Relaxed SiGe Heterostrucutures," ECS Transactions, vol. 3, pp. 1099-1108, October 20, 2006. [45] T. Takanori, T. Kaoru, S. Taizoh, and M. Masanobu, "High Quality Single-Crystalline Ge-Rich SiGe on Insulator Structures by Si-Doping Controlled Rapid Melting Growth," Applied Physics Express, vol. 3, p. 031301, 2010.
|