跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林奕昌
研究生(外文):Yi-Chang Lin
論文名稱:以白光傅立葉轉換法偵測光學生物感測器陣列
論文名稱(外文):Detection of Optical Biosensing Arrays Using White Light Fourier Transform Method
指導教授:蔡宛卲
指導教授(外文):Wan-Shao Tsai
口試委員:魏培坤許芳文余長澤蔡宛卲
口試委員(外文):Pei-Kuen WeiFang-Wen SheuChang-Tze YuWan-Shao Tsai
口試日期:2014-03-10
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:應用材料及光電工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:56
中文關鍵詞:白光傅立葉轉換法光學生物感測器
外文關鍵詞:White Light Fourier Transform MethodOptical Biosensing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
近年來,表面電漿共振技術已廣泛被應用在光學感測。生物光學感測器是利用光在不同環境中的共振或傳播行為,來測定不同生物細胞分子間的鍵結變化。傳統使用表面電漿型的光學生物感測器,必須外加稜鏡將光耦合至感測器中,且需要複雜且精準的操作,來達成表面電漿波與入射光的相位匹配。這幾年研究指出,週期性金屬奈米結構可以讓光激發表面電漿子,不需使用稜鏡即可將光耦合,故本研究採用晶片型奈米金狹縫陣列結構來做為感測器使用。先將待感測物質置於週期性奈米金狹縫陣列上,再以入射TM極化光打在週期性奈米金狹縫陣列結構,產生表面電漿波。量測穿透光譜,分析共振波長或強度變化來達到感測生物細胞分子之間交互作用的目的。奈米金狹縫陣列設計成二維矩陣方式,金膜陣列週期為500 nm,結構面積為5 mm×5 mm,狹縫深度為150 nm,狹縫寬度為60 nm,樣品利用外加壓克力的方式封裝成微流道,使注入溶液時的環境條件穩定。

實驗量測架設為一明場顯微鏡,結合以麥克森干涉儀為基礎的白光傅氏光譜儀來做為量測架設系統。光打入麥克森干涉儀後,光程差由壓電位移元件控制在0至35 μm之間。由光程差所形成的干涉條紋使用CCD(charge-coupled device)攝影機收光,並以數學軟體MatlabR做傅氏分析轉換成頻譜。本研究將奈米金狹縫陣列放入不同濃度甘油與水混合溶液中,藉以量測樣品在不同環境折射率下其穿透光譜變化。甘油與水混合溶液的折射率範圍為1.33至1.38。量測波長靈敏度,其定義為共振波長對應折射率變化。所得到的波長靈敏度數值為213 nm/RIU(refractive index unit)。因使用波長峰值對應折射率變化所得到的波長線性關係並不明顯,故本研究使用質心法來增加線性度,質心法靈敏度數值為130 nm/RIU。雖然靈敏度降低,但改善了波長線性度。此外量測強度靈敏度,其定義為強度對應折射率變化。所得到的強度靈敏度數值為99 %/RIU。為了提升感測強度靈敏度,使用多光譜積分法,得到的強度靈敏度數值為2078 %/RIU,感測強度靈敏度有明顯提升。此外,研究進行了牛血清白蛋白與牛蛋白抗體的結合的感測。利用此架設系統量測牛血清白蛋白與牛蛋白抗體的結合情形;為了提升感測靈敏度,分析上使用多光譜積分法來提高感測強度靈敏度。實驗中所能偵測的牛血清白蛋白濃度為6.06 μM,牛蛋白抗體濃度為60 nM。實驗結果顯示,藉由觀察光譜變化,可以容易看出牛血清白蛋白與牛蛋白抗體是否結合。
關鍵詞:表面電漿共振、白光傅氏光譜儀。
In recent years, surface plasmon resonance technique has been widely used in optical sensing. Optical biosensors detect the binding energy between bio-molecules using the resonance or propagation behavior of light under different environments. Conventionally, the optical biosensor based on surface plasmon resonance needs an extra prism to couple light to the sensor. Complicated and accurate adjustment is required for phase matching between the surface plasmon wave and the incident light. In recent years, some research works have shown that surface plasmon wave can be excited when light passing through the periodic metallic nanostructures directly, without coupling via a prism. In this study, the optical sensor is designed as a chip-based gold nanoslit array structure. A TM-polarized light is normally incident on the gold nanoslit array with the analyte on top of it. The surface plasmon wave is then excited on the gold surface. The transmission spectrum is measured to detect the interaction between sensing analytes through analyzing the resonance wavelength shifts or intensity changes of the spectrum. The gold nanoslit array is designed as a two-by-two matrix, with slit period 500nm, structure area 5 mm×5 mm, slit depth 150 nm, and the slit width 60 nm. The sample was encapsulated with acrylic as a microfluidic chip, which stabilizes the environment during liquid injection.

The experimental set up combines a bright field microscopy with a white-light Fourier spectrometer based on a Michelson interferometer system. In the Michelson interferometer system, the optical path difference is controlled between 0 to 35 μm. The interference pattern is recorded by a charge-coupled-device (CCD) camera as an interferogram. The interferogram is later transformed into spectrum by Fourier analysis using MatlabR software. In this work, the gold nanoslit array was covered by glycerin solution with different concentration. The refractive index of glycerin solution varies from 1.33 to 1.38. Transmission spectra under different environmental index are detected. The wavelength sensitivity, defined as resonance wavelength changes with refractive index, is measured as 213 nm/RIU (refractive index unit). Since the linearity of wavelength sensitivity is not good enough, we further use a center mass method to improve the linearity. The measured wavelength sensitivity under center mass method is 130 nm/RIU. Although the sensitivity is lower, a better linearity is obtained. Moreover, the intensity sensitivity, defined as intensity changes with refractive index, is measured as 99 %/RIU. To increase intensity sensitivity, a multispectral integration method is used. An increased sensitivity of 2078 %/RIU is obtained. Furthermore, the detection of the binding between bovine serum albumin (BSA) and bovine protein antibodies (anti-BSA) are measured, with BSA concentration 6.06 μM and anti-BSA 60 nM. The multispectral integration method is used to analyze the experimental results for better intensity sensitivity. Experimental results show that the binding between BSA and anti-BSA can be easily detected by the spectra change.
Key words:Surface plasmon resonance, White-light Fourier spectrometer
致謝 I
論文摘要 II
Abstract IV
目次 VI
圖目次VII
表目次IX
第一章 緒論 1
1-1研究背景 1
1-2研究動機 2
1-3內容簡介 3
第二章 金屬的電漿共振模態與激發 4
2-1表面電漿子簡介 4
2-2表面電漿子激發 7
第三章 白光傅氏光譜儀 12
3-1傅立葉轉換簡介 12
3-2傅立葉轉換與麥克森干涉儀 13
3-3計算分析 15
第四章 研究方法 19
4-1奈米金狹縫陣列製作[28] 19
4-2量測架設系統 20
4-3靈敏度定義及頻譜軸校正 23
第五章 環境折射率對奈米金狹縫陣列穿透光譜之影響 28
5-1甘油與水混合溶液配置 28
5-2實驗結果分析 29
第六章 週期性奈米金狹縫陣列於生醫感測研究 44
6-1量測樣品封裝 44
6-2溶液配置 44
6-3實驗結果分析 45
第七章 結論與未來展望 53
參考文獻54

圖目次
圖2-1 金屬表面自由電子密度受TM極化電磁波驅動而形成集體縱波震盪之表面電漿示意圖。 4
圖2-2 非輻射性表面電漿電磁波示意圖。 7
圖2-3 輻射性表面電漿電磁波示意圖。 7
圖2-4 金屬表面電漿之色散曲線圖。 8
圖2-5 稜鏡耦合方式激發金屬表面電漿示意圖。 8
圖2-6 光波導耦合方式激發金屬表面電漿示意圖。 9
圖2-7 光柵耦合方式激發金屬表面電漿示意圖。 10
圖3-1 麥克森干涉儀示意圖。 13
圖3-2 電場示意圖(a)兩無相位差之光波 (b)建設性干涉。 15
圖3-3電場示意圖(a)兩有180⁰相位差之光波 (b)破壞性干涉。 15
圖3-4 由不同光程差造成干涉條紋獲得干涉圖示意圖。 15
圖3-5 不同波長所對應餘弦曲線示意圖。 16
圖3-6 (a)餘弦曲線疊加後之干涉圖 (b)轉換後之頻譜圖,x範圍為0至300,間距為1。 16
圖3-7 (a)餘弦曲線疊加後之干涉圖 (b)轉換後之頻譜圖,x範圍為0至300,間距為0.5。(c)餘弦曲線疊加後之干涉圖 (d)轉換後之頻譜圖,x範圍為0至300,間距為1.5。 17
圖3-8 (a)餘弦曲線疊加後之干涉圖 (b)轉換後之頻譜圖,x範圍為0至150,間距為0.5。(c)餘弦曲線疊加後之干涉圖 (d)轉換後之頻譜圖,x範圍為0至450,間距為1.5。 18
圖4-1 壓印模板製作流程圖。 19
圖4-2 利用壓印模板製作奈米金狹縫陣列流程圖。 20
圖4-3 (a)奈米金狹縫陣列實際樣品圖。 (b)奈米金狹縫陣列在掃描式電子顯微鏡下的圖形。 20
圖4-4 量測系統架設圖。 20
圖4-5 干涉儀操控流程圖。 22
圖4-6 光譜儀量測架設圖。 22
圖4-7 (a)量測白光光源之干涉圖 (b)相對應之傅立葉轉換頻譜圖 (c)商用光譜儀白光頻譜圖 25
圖4-8 (a)白光光源通過632 nm帶通濾波器(頻寬10 nm)之干涉圖 (b)相對應之傅立葉轉換頻譜圖(c)商用光譜儀白光光源通過632 nm帶通濾波器(頻寬10 nm)之頻譜圖 26
圖4-9 (a)白光光源通過650 nm帶通濾波器(頻寬80 nm)之干涉圖 (b)相對應之傅立葉轉換頻譜圖(c)商用光譜儀白光光源通過650 nm帶通濾波器(頻寬80 nm)之頻譜圖 27
圖5-1 甘油濃度與折射率關係圖 28
圖5-2 (a)量測白光通過奈米金狹縫陣列之干涉圖 (b)相對應之傅立葉轉換頻譜圖 29
圖5-3 (a)量測白光通過置於水之奈米金狹縫陣列干涉圖 (b)相對應之傅立葉轉換頻譜圖 30
圖5-4 (a)量測白光通過置於甘油(2.5%)與去離子水(97.5%)混合溶液之奈米金狹縫陣列干涉圖(b)相對應之傅立葉轉換頻譜圖 30
圖5-5 (a)量測白光通過置於甘油(5%)與水(95%)混合溶液之奈米金狹縫陣列干涉圖(b)相對應之傅立葉轉換頻譜圖 30
圖5-6 (a)量測白光通過置於甘油(7.5%)與水(92.5%)混合溶液之奈米金狹縫陣列干涉圖(b)相對應之傅立葉轉換頻譜圖 31
圖5-7 (a)量測白光通過置於甘油(10%)與水(90%)混合溶液之奈米金狹縫陣列干涉圖
(b)相對應之傅立葉轉換頻譜圖 31
圖5-8(a)量測白光通過置於甘油(12.5%)與水(87.5%)混合溶液之奈米金狹縫陣列干涉圖(b)相對應之傅立葉轉換頻譜圖 32
圖5-9 (a)量測白光通過置於甘油(15%)與水(85%)混合溶液之奈米金狹縫陣列干涉圖
(b)相對應之傅立葉轉換頻譜圖 32
圖5-10 (a)量測白光通過置於甘油(17.5%)與水(82.5%)混合溶液之奈米金狹縫陣列干涉圖(b)相對應之傅立葉轉換頻譜圖 33
圖5-11 (a)量測白光通過置於甘油(20%)與水(80%)混合溶液之奈米金狹縫陣列干涉圖
(b)相對應之傅立葉轉換頻譜圖 33
圖5-12 (a)量測白光通過置於甘油(22.5%)與水(77.5%)混合溶液之奈米金狹縫陣列干涉圖(b)相對應之傅立葉轉換頻譜圖 34
圖5-13 (a)量測白光通過置於甘油(25%)與水(75%)混合溶液之奈米金狹縫陣列干涉圖
(b)相對應之傅立葉轉換頻譜圖 34
圖5-14 (a)量測白光通過置於甘油(27.5%)與水(72.5%)混合溶液之奈米金狹縫陣列干涉圖(b)相對應之傅立葉轉換頻譜圖 35
圖5-15 (a)量測白光通過置於甘油(30%)與水(70%)混合溶液之奈米金狹縫陣列干涉圖
(b)相對應之傅立葉轉換頻譜圖 35
圖5-16 量測奈米金狹縫陣列在不同濃度甘油與去離子水混合溶液下之穿透頻譜圖。 36
圖5-17 奈米金狹縫陣列表面電漿共振波長與折射率變化之關係圖。 37
圖5-18 以質心波長法分析奈米金狹縫陣列表面電漿共振波長與折射率變化之關係圖。 37
圖5-19強度靈敏度與頻譜關係圖。 38
圖5-20強度靈敏度與環境折射率關係圖。 39
圖5-21以多光譜積分法分析強度靈敏度與環境折射率關係圖。 39
圖5-22商用光譜儀量測奈米金狹縫陣列在不同濃度甘油與水混合溶液環境之穿透頻譜圖 40
圖5-23 商用光譜儀量測奈米金狹縫陣列表面電漿共振波長與折射率變化之關係圖。 41
圖5-24以質心法分析光譜儀奈米金狹縫陣列表面電漿共振波長與折射率變化之關係圖 41
圖5-25 以商用光譜儀量測強度靈敏度與頻譜關係圖。。 42
圖5-26 以商用光譜儀量測強度靈敏度與環境折射率關係圖。 42
圖5-27使用商用光譜儀以多光譜積分法分析強度靈敏度與環境折射率關係圖。 43
圖6-1 奈米金狹縫陣列封裝示意圖。 44
圖6-2 (a)第一次通入磷酸鹽緩衝溶液之干涉圖 (b)相對應之傅利射轉換頻譜圖 46
圖6-3 (a)一開始通入牛血清白蛋白溶液之干涉圖 (b)相對應之傅利射轉換頻譜圖 46
圖6-4 (a)通入牛血清白蛋白溶液3.5小時後之干涉圖 (b)相對應之傅利射轉換頻譜圖 46
圖6-5 (a)第二次通入磷酸鹽緩衝溶液之干涉圖 (b)相對應之傅利射轉換頻譜圖 47
圖6-6 (a)一開始通入牛蛋白抗體溶液之干涉圖 (b)相對應之傅利射轉換頻譜圖 47
圖6-7 (a)通入牛蛋白抗體溶液15小時後之干涉圖(b)相對應之傅利射轉換頻譜圖 47
圖6-8 (a) 第三次通入磷酸鹽緩衝溶液之干涉圖(b)相對應之傅利射轉換頻譜圖 48
圖6-9 量測奈米金狹縫陣列在蛋白質結合環境之穿透頻譜圖 49
圖6-10量測牛血清白蛋白與牛蛋白抗體結合情形 49
圖6-11積分法量測牛血清白蛋白與牛蛋白抗體結合情形 50
圖6-12波長質心法量測牛血清白蛋白與牛蛋白抗體結合情形 51

表目次
表5-1 甘油與水混合比例與相對應之折射率值 28
表5-2實驗量測架設與商用光譜儀感測靈敏度比較。 43
表5-3牛血清白蛋白與牛蛋白抗體結合情形訊號強度比較。 52
[1]S. M. Borisov and O. S. Wolfbeis, "Optical Biosensors," Chem. Rev., vol. 108, pp. 423-461, 2008.
[2]謝振傑, "光纖生物感測器," 物理雙月刊, pp. 704-710, 2006.
[3]Andrey L, Ghindilis, P. Atanasov, M. Wilkinst, and E. Wilkins, "Immunosensors electrochemical sensing and other engineering approaches," Biosens. Bioelectron. vol. 13, pp. 113-131, 1998.
[4]P. I. Reyes, C.-J. Ku, Z. Duan, Y. Lu, A. Solanki, and K.-B. Lee, "ZnO thin film transistor immunosensor with high sensitivity and selectivity," Appl., vol. 98, p. 173702, 2011.
[5]M. POHANKA and P. SKLADAL, "Piezoelectric immunosensor for the direct and rapid detection of Francisella tularensis," Folia Microbiol., vol. 52, pp. 325-330, 2007.
[6]X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: a review," Anal Chim Acta, vol. 620, pp. 8-26, 2008.
[7]C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, "Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor," Elsevier, vol. 15, pp. 579-589, 2000.
[8]J. Piehler, A. Brecht, and G. Gauglitz, "Affinity Detection of Low Molecular Weight Analytes," Anal. Chem., vol. 68, pp. 139-143, 1996.
[9]D. Clerc and W. Lukosz, "Direct imunosensing with an integrated-optical output grating coupler," Elsevier, vol. 40, pp. 53-58, 1997.
[10]G. Jin, P. Tengvall, and H. Arwin, "A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions," Analytical Biochemistry, vol. 232, pp. 69-72, 1995.
[11]G. P. Anderson, J. P. Golden, L. K. Cao, D. Wijesuriya, L. C. Shriver-Lake, and F. S. Ligler, "Development of an Evanescent Wave Fiber Optic Biosensor," IEEE Eng. Med. Biol., pp. 358-363, 1994.
[12]J. Homola, "Present and future of surface plasmon resonance biosensors," Anal Bioanal Chem, vol. 377, pp. 528-39, 2003.
[13]J. Homola, S. S. Yee, and G. n. Gauglitz, "Surface plasmon resonance sensors: review," Elsevier Science S.A. , vol. B, pp. 3-15, 1999.
[14]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, pp. 667-669, 1998.
[15]S. Kawata, Near-Field Optics and Surface Plasmon Polaritons. New York: Springer, 2001.
[16]A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, "Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films," Langmuir, vol. 20, pp. 4813-4815, 2004.
[17]L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, "Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor," Applied Physics Letters, vol. 91, p. 123112, 2007.
[18]A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, "Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors," Appl., vol. 90, p. 243110, 2007.
[19]K.-L. Lee and P.-K. Wei, "Optimization of periodic gold nanostructures for intensity-sensitive detection," Appl., vol. 99, p. 083108, 2011.
[20]K.-L. Lee, S.-H. Wu, and P.-K. Wei, "Intensity sensitivity of gold nanostructures and its application for high-throughput biosensing," OPT EXPRESS, vol. 17, pp. 23104-23113, 2009.
[21]T.-Y. Tseng, P.-J. Lai, and K.-B. Sung, "High-throughput detection of immobilized plasmonic nanoparticles by a hyperspectral imaging system based on Fourier transform spectrometry," OPT EXPRESS, vol. 19, pp. 1291-1300, 2011.
[22]K.-L. Lee, "The Properties of Optical Wave in Periodic Metallic Nanostructures and Its Application in Biosensing," doctoral, Graduate Institute of Photonics and Optoelectronics, College of Electrical Engineering and Computer Science, National Taiwan University, 2008.
[23]邱國斌 and 蔡定平, "金屬表面電漿簡介," 物理雙月刊, vol. 28, pp. 472-485, 2006.
[24]R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," philos, vol. 4, pp. 396-402, 1902.
[25]U. Fano, "The theory of anomalous diffraction grattings and of quasi-stationary waves on metallic surface(Sommerfield's wave)," J. Opt. Soc. Am, vol. 31, pp. 213-222, 1941.
[26]Springer Series on Chemical Sensors and Biosensors: Springer, 2006.
[27]B. Chu, J. Harlow, J. Wagman, and J. Pitre, ADVANCED UNDERGRADUATE LABORATORY EXPERIMENT 10, FTS Fourier Transform Spectroscopy, 2006.
[28]K.-L. Lee, P.-W. Chen, S.-H. Wu, J.-B. Huang, S.-Y. Yang, and P.-K. Wei, "Enhancing Surface Plasmon Detection Using Template-Stripped Gold Nanoslit Arrays on Plastic Films," ACS Nano., vol. 6, pp. 2931-2939, 2012.
[29]W. S. Tsai, K. L. Lee, M. Y. Pan, and P. K. Wei, "Increased detection sensitivity of surface plasmon sensors using oblique induced resonant coupling," Opt Lett, vol. 38, pp. 4962-5, Dec 1 2013.
[30]D. Shankaran, K. Gobi, and N. Miura, "Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest," Sensors and Actuators B: Chemical, vol. 121, pp. 158-177, 2007.
[31]A. Moreau, C. Lafarge, N. Laurent, K. Edee, and G. Granet, "Enhanced transmission of slit arrays in an extremely thin metallic film," Journal of Optics A: Pure and Applied Optics, vol. 9, pp. 165-169, 2007.
[32]J.-J. Greffet, "Introduction to Surface Plasmon Theory," Springer, vol. 167, pp. 105-148, 2012.
[33]M. A. Cooper, "Optical biosensors: where next and how soon?" Drug Discov Today, vol. 11, pp. 1061-7, Dec 2006.
[34]T. Y. Chang, M. Huang, A. A. Yanik, H. Y. Tsai, P. Shi, S. Aksu, et al., "Large-scale plasmonic microarrays for label-free high-throughput screening," Lab Chip, vol. 11, pp. 3596-602, Nov 7 2011.
[35]M. Bally, M. Halter, J. Voros, and H. M. Grandin, "Optical microarray biosensing techniques," Surface and Interface Analysis, vol. 38, pp. 1442-1458, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top