王桂人,2003,以零價鐵技術處理地下水中三氯乙烯及四氯乙烯之研究,碩士論文,逢甲大學,環境工程與科學研究所,台中。
王興睿、石柏岡、張文亮,2011,「應用追蹤劑試驗於牡蠣殼礫間接觸水質淨化系統之人工濕地設計與延散效應分析」,農業工程學報,第57卷,第3期,第17-31頁。
中興工程顧問社,2000,土壤與地下水污染整治標準及處理技術之現況評估。
田福助,1987,電化學-理論與應用,高立圖書股份有限公司,台北。
尹邦躍,2002,奈米時代,五南圖書出版股份有限公司,台北。
行政院環境保護署,2012,土壤及地下水污染整治網http://sgw.epa.gov.tw/public/index.asp
行政院勞工安全委員會,2012,物質安全資料表,http://ghs.cla.gov.tw/CHT/intro/search.aspx
行政院經濟部水利署,2012,地下水觀測網http://140.112.190.183/index.php
行政院勞工安全委員會勞工安全衛生研究所,1997,應用非侵入性生物指標方法以檢測四氯乙烯之職業暴露程度(一)。
江姿幸,2005,滲透性反應牆對於砷污染土壤進行電動力法復育影響之研究,碩士論文,國立中山大學,環境工程研究所,高雄。吳先琪,陳世裕,程淑芬等,2002,「以健康風險管理為依據之含氯有機化合物污染場址地下水復育技術及決策支援系統架構之研發-子計劃四:金屬還原技術用於含氯有機化合物污染場址復育之機制及評估預測模式(III) 」,行政院國家科學委員會補助專題研究計劃成果報告,計畫編號:NSC 90-2621-Z-002-034。
林財富,洪旭文,2000,「現地化學處理方法之發展現況」,土壤及地下水污染整治技術研究成果發表會論文集,第195-212頁。林財富,2002,「土壤與地下水物理化學與熱處理整治技術之發展現況」,環保月刊第九期,第87-99頁。林佩君,2004,整合零價金屬與電動力法復育有機污染土壤-以四氯乙烯為例,碩士論文,朝陽科技大學,環境工程與管理系,台中。林育暄,2007,奈米零價鐵搭配過硫酸鹽還原氧化脫氯水中三氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。林財富,2008,土壤與地下水污染整治-原理與應用,中華民國環境工程學會編印,台北。
林建宇,2011,分散性奈米鐵和鈀/鐵雙金屬粒子降解四氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。施周,張文輝,2006,環境奈米技術,五南圖書出版股份有限公司,台北。
徐國財,張立德,2004,奈米複合材料,五南圖書出版股份有限公司,台北。
張德光,2004,結合鈀化奈米鐵粉懸浮液與電動力法處理地下環境介質中之三氯乙烯,碩士論文,國立中山大學,環境工程研究所,高雄。黃光照,李重賢,李美英,劉怡君,2004,奈米科技交響曲-物理篇,國立台灣大學出版中心,台北,第5頁。
黃永昌,2010,分散性奈米零價鐵處理地下水中四氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。連興隆,張偉賢,2002,「奈米級複合金屬應用於受有機氯汙染地下水復育之研究」,第二十七屆廢水處理技術研討會論文集,台北。董瑞安,1992,微量含氯有機物在地下水中生物轉換及傳輸模式之研究,博士論文,國立台灣大學,環境工程研究所,台北。劉志忠,2006,零價鐵反應牆應用於三氯乙烯還原脫氯之整合研究,博士論文,國立中央大學,環境工程研究所,桃園。劉興鑑,孫逸民,陳玉舜,趙敏勳,謝明學,2007,儀器分析,全威圖書有限公司,台北。
郭子彥,2009,奈米鐵反應牆結合界面活性劑與電動力法處理地下環境介質中四氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。蔡文田,1992,「含氯有機溶劑之毒性及新陳代謝機制」,工業污染防治,第11卷,第3期,第175-187頁。薒欣怡,1999,三氯乙烯與四氯乙烯對人類肺癌細胞之毒性研究,碩士論文,國立中央大學,生命科學研究所,桃園。
蔡政勳,2000,零價鐵反應牆處理三氯乙烯污染物之反應行為研究,碩士論文,國立中央大學,環境工程研究所,桃園。蔡浩文,2005,零價鐵提升電動力技術復育六價鉻污染高嶺土之小型模場研究,碩士論文,義守大學,材料科學與工程學系,高雄。鄭雅文,2006,TX-100搭配電解加強奈米鐵反應墻處理地下水中三氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。Chang, J.H., Cheng, S.F., 2006, “The Remediation Performance of a Specific Electrokinetics Integrated with Zero-Valent Metals for Perchloroethylene Contaminated Soils,”Journal of Hazardous Materials, Vol. 131, pp. 153-162.
Cheng, I.F., Fernando, Q., Korte, N., 1997, “Electrochemical Dechlorination of 4-Chlorophenol to Phenol,”Environmental Science and Technology, Vol. 31, No. 4, pp. 1074-1078.
Dong, T.T., Luo, H., Wang, Y., Hu, B., Chen, H., 2011, “Stabilization of Fe-Pd Bimetallic Nanoparticles with Sodium Carboxymethyl Cellulose for Catalytic Reduction of Para-Nitrochlorobenzene in Water,” Desalination, Vol. 271, pp. 11-19.
Elimelech, M., Jia, X., Gregory, J., Williams, R., 1995, Particle Deposition and Aggregation: Measurement, Modeling, and Simulation, Butterworth-Heinemann, Oxford.
Everett, D.H., 1989, Basic Principles of Colloid Science, The Royal Society of Chemistry, London.
Fatisson, J., Ghoshal, S., Tufenkji, N., 2010, “Deposition of Carboxymethylcellulose Coated Zero-Valent Iron Nanoparticles onto Silica: Roles of Solution Chemistry and Organic Molecules,” Langmuir, Vol. 26, pp. 12832–12840.
Gavaskar, A.R., Gupta, N., Sass, B.M., Janosy, R.J., Q’Sullivan, D., 1998, Permeable Barriers for Groundwater Contamination: Design, Construction and Monitoring, 1sd ed., Battelle Press, Columbus.
Gillham, R.W., O’Hannesin, S.F., 1994, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valen Iron,” Ground Water, Vol. 32, pp. 958-967.
Gramham, L.J., Jovanovic, G., 1999, “Dechlorination of P-chlorophenol on a Pd/Fe Catalyst in a Magnetically Stabilized fluidized bed; Implications for Sludge and Liquid Remediation,”Chemical Engineering Science, Vol. 54, pp. 3085-3093.
Guo, H., Lee, S.C., Chan, L.Y., Li, W.M., 2004, “Risk Assessment of Exposure to Volatile Organic Compounds in Different Indoor Environments,” Environmental Research, Vol. 94, pp.57-66.
He, F., Zhao, D., 2005, “Preparation and Characterization of a new Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water,”Environmental Science and Technology, Vol. 39, pp. 3314-3320.
He, F., Zhao, D. Y., 2007a, “Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers,”Environmental Science and Technology, Vol. 41, pp. 6216-6221.
He, F., Zhao, D.Y., Liu, J.C., Roberts, C.B., 2007b, “Stabilization of Fe-Pd Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Transport and Dechlorination of Trichloroethylene in Soil and Groundwater,”Journalof Industrial and Engineering Chemistry, Vol. 46, pp.29-34.
He F., Zhao D.Y., 2008, “Hydrodechlorination of Trichloroethene Using Stabilized Fe-Pd Nanoparticles: Reaction Mechanism and Effects of Stabilizers, Catalysts and Reaction Conditions,”Applied Catalysis B, Vol. 84, pp. 533-40.
Josephson, J., 1986, “Implementing Superfund,”Environmental Science and Technology, Vol. 20, pp. 23.
Kim, Y.H., Carraway, E.R., 2000, “Dechlorination of Pentachlorophenol by Zero Valent Iron and modifiedzero Valent Irons,” Environmental Science and Technology, Vol. 34, pp. 2014-2017.
Korte, N.E., Zutman, J.L., Schlosser, R.M., Liang, L., Gu, B., Fernando, Q., 2000, “Field Application of Palladized Iron for the Dechlorination of Trichloroethene,” Waste Management, Vol. 20, pp. 687-694.
Lawrence, H.L., Jean, C.P., 2001, “Hepatic and Renal Toxicities Associated with Perchloroethylene,”Pharmacological Reviews, Vol. 53, pp. 177-208.
Lien, H.L., Elliott, D.W., Sun, Y.P., Zhang, W.X., 2006, “Recent Progress in Zero-Valent Iron Nanoparticles for Groundwater Remediation,” Journal of Environmental Engineering, Vol. 16, No. 6, pp. 371-380.
Mallouk, T.E., Ponder, S.M., Darab, J.G., 2000, “Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zerovalent Iron. , ” Environmental Science and Technology, Vol. 34, pp. 2564-2569.
Matheson, L.J., Tratnyek, P.G., 1994, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,”Environmental science and technology, Vol. 28, No.12, pp, 2045-2053.
Moen, B.E., Hollund, B.E., 2000, “Exposure to Organic Solvents Among Car Painters in Bergen, Norway, ”Annals of Occupational Hygiene, Vol. 44, pp. 185-189.
Muftikian, R., Fernando, Q., Korte, N., 1995, “A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water, ”Water Research, Vol. 29, pp. 2432-2439.
NRC, 1994, Alternatives for Groundwater Cleanup, National Academy Press, Washington, DC.
Nyer, E.K., Fam, S., Kidd, D.F., Palmcr, P.L., Bocttcheer, G., Crossman, T. L., Suthersan, S.S., 1996, “In-Situ Treatment,”pp. 310-314, CRC Press, Inc., Boca Raton, Florida.
Otterstedt, J., Brandreth, D.A., 1998, Small Particles Technology, Plenum Press, New York.
Phenrat, T., Kim, H.J., Fagerlund, F., Illangasekare, T., Tilton, R.D., Lowry, G.V., 2009, “Particle Size Distribution, Concentration, and magnetic attraction affect transport of polymer-modified Fe-0 nanoparticles in sand columns,”Environmental Science and Technology, Vol. 43, pp. 5079-5085.
Phenrat, T., Saleh, N., Sirk, K., Kim, H.J., Tilton, R.D., Lowry, G.V., 2008, “Stabilization of Aqueous Nanoscale Zerovalent Iron Dispersions by Anionic Polyelectrolytes: Adsorbed Anionic Polyelectrolyte Layer Properties and their Effect on Aggregation and Sedimentation,” Journal of Nanopartixle Research, Vol. 10, 795-814.
Ritter, K., Odziemkowski, M.S., Gillham, R.W., 2002, “An In Situ Study of the Role of Surface Films on Granular Iron in the Permeable Iron Wall Technology,”Journal of Contaminant Hydrology, Vol. 55, No. 2, pp. 87-111.
Rosensweig, R.E., 1985, Ferro Hydrodynamics, Cambridge Univ. Press., New York.
Powell, R.M., Puls, R.W., 1997, Permeable Reactive Subsurface Barriers for Interception and Remediation of Chlorinated Hydrocarbon and Chromium (VI) Plumes in Ground Water, U.S. EPA Remedial Technology Fact Sheet. EPA-600-F-97-008.
Schreier, C.G., Reinhard, M., 1995, “Catalytic Hydrodehalogenation of Chlorinated Ethylenes Using Palladium and Hydrogen for the Treatment of Contaminated Water,” Chemosphere, Vol. 31, No. 6, pp. 3475-3487.
Scherer, M.M., Balko, B.A., Gallagher, D.A., Tratnyek, P.G., 1998, “Correlation Analysis of Rate Constants for Dechlorination by Zero-Valent Iron,”Environmental Science and Technology, Vol. 32, No. 19, pp. 3026-3033.
Scherer, M.M., Richter, S., Valentine, R.L. Alvarez, P.J.J., 2000, “Chemistry and Microbiology of Permeable Reactive Barriers for In Situ Groundwater Clean Up,”Environmental Science and Technology, Vol. 30, No. 3, pp. 364-411.
Shih, Y.H., Hsu, C.Y., Su, Y.F., 2011, “Reduction of hexachlorobenzene by nanoscale zero-valent iron: Kinetics, pH effect, and degradation mechanism,” Separation and Purification Technology, Vol. 76, pp. 268-274.
Smith, M.B., March, J., 2001, Advanced organic chemistry: reactions, mechanisms, and structure, 5th ed.; Wiley-Interscience: New York.
Spektroskopische Tools/Spectroscopic Tools, 2012, http://www.science -and-fun.de/tools/
Stumm, W., Morgan, J.J., 1996, Aquatic chemistry, 3rd Edition, John Wiley &; Sons, Inc.,Wiley Interscience, New York.
Su, C., Puls, R.W., 1999, “Kinetics of Trichloroethene Reduction by Zerovalent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products,”Environmental Science and Technology, Vol. 33, No. 1, pp. 163-168.
U.S. EPA., 2002, Field Applications of in Situ Remediation Technologies: Permeable Reactive Barriers, Office of Solid Waste and Emergency Response, Technology Innovation Office.
Westrick, J.J., Mello, J.W., Thomas, R.F., 1984, “The groundwater supply survey,” Journal American Water Works Assonciation, Vol. 76, pp. 52-59.
Wang, J.D., Chen, J.D., 1993, “Acute and Chronic Neurological Symptoms among Paint Workers Exposed to Mixtures of Organic Solvents,” Environmental Research, Vol. 61, pp. 107-116.
Wang, C.B., Zhang, W.X., 1997, “Synthesizing Nanoscale Iron Particle for Rapid and Complete Dechlorination of TCE and PCBs,” Environmental Science and Technology, Vol. 31, pp. 2154-2156.
Wang, F.I., Kuo, M.L., Shun, C.T., Ma, Y.C., Wang, J.D., Ueng, T.H., 2002, “Chronic Toxicity of a Mixture of Chlorinated Alkanes and Alkenes in ICR Mice,”Journal of toxicology and environmental health part A, Vol. 65, pp.279-291.
Wei, H., Li, K.B., Tong, S.P., Liu, W.P., 2004, “Reductive Dechlorination of Atrazine by Ni/Fe Bimetallic Particles,”Environmental Sciences, Vol. 25, No. 1, pp. 154-157.
Weng, C.H., Lin, Y.T., Lin, T.Y., Kao, C.M., 2007,“Enhancement of Electrokinetic Remediation of Hyper-Cr(VI) Contaminated Clay by Zero-Valent Iron,”Journal of Hazardous Materials, Vol. 149, pp. 292–302
William, A.A., Roberts, A.L., 2000, “Patways and Kinetics Chlorinatrd Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles,” Environmental Science and Technology, Vol. 34, No. 9, pp. 1794-1805.
Xu, J., Lv, X., Li, J., Li, Y., Shen, L., Zhou, H., Xu, X., 2012, “Simul- taneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support,” Journal of Hazardous Materials, Vol. 225-226, pp. 36-45.
Xu, Y., Zhang, W.X., 2000, “Subcolloidal Fe/Ag Particles for Reductive Dehalogenation of Chlorinated Benzenes,”Industrial and Engineering Chemistry Research, Vol, 39, No. 7, pp. 2238-2244.
Yuan, C, Chiang, T.S., 2008, “Enhancement of Electrokinetic Remediation of Arsenic Spiked Soil by Chemical Reagents,”Journal of Hazardous Materials, Vol. 152, pp. 309-315.
Yuan, S., Long, H., Xie, W., Liao, P., Tong, M., 2012, “Electrokinetic Transport of CMC-Stabilized Pd/Fe Nanoparticles for the Remediation of PCP-Contaminated Soil,”Geoderma, Vol. 185-186 , pp. 18-25.
Zhang, W.X., Wang, C.B., Lien, H.L., 1998, “Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles,” Catalysis Today, Vol. 40, pp. 387-395.