跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林明憙
研究生(外文):Ming-Hei Lin
論文名稱:電解加強奈米鈀/鐵雙金屬粒子滲透性反應牆處理地下水中四氯乙烯之研究
論文名稱(外文):Electrolysis-Enhanced Permeable Reactive Barrier Packed with Nano-Pd/Fe Bimetallic Particles of Perchloroethylene
指導教授:黃益助
指導教授(外文):Yi-Chu Huang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:123
中文關鍵詞:四氯乙烯奈米鈀鐵追蹤劑透水性反應牆電解
外文關鍵詞:perchloroethylenenano-palladium/irontracerpermeable reactive barrierelectrolysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:413
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究以四氯乙烯(PCE)作為地下水污染整治之主要標的污染物,探討電解作用對奈米鈀鐵反應牆處理地下水中PCE處理效率之影響。實驗架構分為四個階段,第一階段為石英砂及奈米鈀鐵基本特性分析,第二階段為不同pH值(pH 8-9)對奈米鈀鐵雙金屬降解PCE影響之批次試驗,第三階段為多孔介質傳輸之砂箱試驗,第四階段為處理前、後奈米鈀鐵之SEM-EDS及FTIR分析。
本研究實驗室合成奈米鈀鐵之平均粒徑為111.1 nm,比表面積為56.05 m2 g-1,由X-ray繞射儀(XRD)鑑定奈米鈀鐵,只發現Fe的吸收峰並未發現Pd,可能是Pd的添加量太低,導致Pd在XDR上偵測不到。在不同pH值降解PCE試驗中,隨著pH值的提高,奈米鈀鐵對PCE還原降解能力發生降低之情形。降解PCE所產生Cl-之理論釋出量皆接近於實際Cl-釋出量,PCE降解量和Cl-釋出量兩者之間成正相關性。本研究所有還原降解PCE之批次試驗中,皆未檢測到三氯乙烯(trichloroethylene, TCE)、1,1-二氯乙烯(1,1-dichloroethylene, 1,1-DCE)、順1,2-二氯乙烯(cis-1,2-dichloroethylene, cis-1,2-DCE)、反1,2-二氯乙烯(trans-1,2-dichloroethylene, trans-1,2-DCE)、氯乙烯(vinyl chloride, VC)等副產物。

藉由追蹤劑試驗可發現平均停留時間約為理論值的1.7倍左右,奈米鈀鐵反應牆降解PCE試驗中,奈米鈀鐵之反應活性約可維持28 hr左右,與郭(2009)與黃(2010)研究進行比較,奈米鈀鐵反應活性的持續時間明顯高於奈米零價鐵2~4倍。在實驗中,反應槽內ORP能穩定維持在-300 mV以下,顯示系統呈現穩定的還原狀態,Cl-濃度有明顯的提高,顯示奈米鈀鐵對於PCE確實有還原脫氯作用。電解加強奈米鈀鐵反應牆降解PCE試驗中,可藉由電解反應,在陽極附近釋出H+來酸洗顆粒表面的沉積物,並增加其反應活性,實驗結果顯示奈米鈀鐵對PCE不能完全降解,其反應活性約可維持在16~20 hr左右,但效果並不如預期。因此,未來電解加強奈米鈀鐵反應牆技術仍需再進一步對電流、電壓及電解液等方面進行探討,以利於應用在現地處理受含氯有機物污染地下水整治復育上。
SEM-EDS表面型態觀察中,反應前表面是以顆粒型態串聯成鏈狀之結構所組成,反應後表面呈現出不規則片狀之型態。FTIR鑑定反應後之奈米鈀鐵,在3200~3500 cm-1有一個強而廣的訊號判定為O-H,在1600~1400 cm-1間訊號有增強情形,其中,1539 cm-1有一個較強訊號判定為硝基化合物(NO2),1385 cm-1有一個較強訊號判定為CH3,並推測可能是烷類,另外,在967 cm-1有一個較強訊號判定為烯類(C=C-H),最後在600~800 cm-1間訊號有增強情形其判定為C-Cl。
關鍵字:四氯乙烯、奈米鈀鐵、追蹤劑、透水性反應牆、電解

The aim of this study is to investigate the degradation efficiency of target pollutant, perchloroethylene (PCE), by nano-palladium/iron (Pd/Fe) bimetallic metal particles enhanced by electrolysis. The experiments were divided into four stages. The first stage was to characterize the properties of quartz sand and nano-Pd/Fe particles. The second stage was to conduct the batch tests under various pH values (pH 8-9) on the effects of PCE degradation with nano-Pd/Fe. The third stage was to observe the transport behaviors of solutes through the porous media in a bench-scale sand box. And the fourth stage was to identify the variations of nano-Pd/Fe before and after the reaction with PCE by SEM-EDS and FTIR analysis.
The average size and specific surface area of lab-synthesized nano-Pd/Fe particles were 111.1 nm and 56.05 m2 g-1, respectively. The absorption peaks of nano-Pd/Fe analyzed by the X-ray diffraction detector (XRD) only identified Fe. That may be due to the trace amount of Pd on bimetallic metals. For the tests of various pH values (pH 8-9) on PCE degradation with nano-Pd/Fe, the efficiency decreased with higher pH values. The concentration of Cl- released from PCE degradation was close to the theoretical values. The PCE degradation levels were positive correlated with the release amounts of Cl-. In this study, the by-products of PCE degradation such as trichlorethylene (TCE), cis-1,2-dichloroethylene (cis-1,2-DCE), trans-1,2-dichloroethylene (trans-1,2-DCE), 1,1-dichloroethylene (1,1-DCE), and vinyl chloride (VC) were not detected.
Via the tracer tests, the average residence time was about 1.7 times higher than the theoretical value. For the test of permeable reactive barrier (PRB) packed with nano-Pd/Fe on PCE degradation, the duration of reactivity of nano-Pd/Fe could be maintained about 28 hr which was around 2 to 4 times higher than that of nano zero valent iron. During the tests, ORP values were steadily maintained below -300 mV in the PRB showing a reduction state was kept in the system. Dechlorination of PCE with nano-Pd/Fe particles were identified by the significant increase of Cl- concentration. The test of nano-Pd/Fe PRB enhanced by electrolysis on PCE degradation, H+ released near the anode was able to acid-washed the surface of Pd/Fe particles to increase their reactivity. The results showed that PCE was not completely degraded by the nano-Pd/Fe particles. The reactivity of Pd/Fe was observed to maintain about 16 to 20 hr. Therefore, more researches on the aspects of current, potential, and electrolyte to the performance of electrolysis enhanced PRB packed with nano-Pd/Fe technology are needs to facilitate its application to in-situ remediation of groundwater contaminated by chlorinated solvents.
From the images observed by SEM-EDS, the surface morphology of nano-Pd/Fe particles displayed chain-like structure and irregular flakes pre-reacted and post-reacted with PCE, respectively. The spectrum of fresh nano-Pd/Fe particles analyzed by FTIR showed that a strong and broad absorption signal ranged from 3200 to 3500 cm-1 was identified to be O-H and at 1539, 1385, 967 cm-1 to be the nitro compounds (NO2), alkane (CH3), and alkene (C = CH), respectively. Finally, a signal ranged from 600 to 800 cm-1 was C-Cl.
Keywords: perchloroethylene, nano-palladium/iron, tracer, permeable reactive barrier, electrolysis

摘 要 I
Abstract III
謝誌 V
目錄 VI
表目錄 IX
圖目錄 XI
第1章 前言 1
1.1 研究緣起 1
1.2 研究目的及內容 2
第2章 文獻回顧 4
2.1 土壤與地下水污染概況 4
2.2 四氯乙烯之物化特性及現行法規管制標準 8
2.3 含氯有機化合物污染地下水之整治相關技術 12
2.4 零價鐵污染整治應用 14
2.4.1 零價鐵去除污染物反應機制 14
2.4.2 零價鐵去除污染物之反應動力 17
2.5 奈米材料基本特性 18
2.5.1 奈米材料合成相關技術 19
2.5.2 奈米複合雙金屬相關研究 19
2.5.3 奈米材料分散性能探討 20
2.6 電動力法 21
2.6.1 電動力法之相關機制 21
2.6.2 電動力法之極化現象 23
2.6.3 電動力法整治污染物之相關研究 24
2.7 砂箱設計 26
第3章 材料與方法 28
3.1 材料與設備 28
3.1.1 供試砂 28
3.1.2 實驗藥品 28
3.1.3 實驗設備 29
3.1.4 實驗設備 32
3.1.4.1 批次反應槽 32
3.1.4.2 砂箱裝置 32
3.2 方法與步驟 35
3.2.1 實驗流程 35
3.2.2 奈米鐵與奈米鈀鐵之製備方法 37
3.3 批次實驗 38
3.3.1 pH 8~9之間對PCE降解影響之批次試驗 38
3.4 石英砂之清洗及孔隙率試驗與粒徑分布 38
3.5 砂箱試驗 39
3.5.1 追蹤劑試驗 39
3.5.2 四氯乙烯傳輸試驗 40
3.5.3 奈米鈀鐵反應牆降解四氯乙烯試驗 41
3.5.4 電解加強奈米鈀鐵反應牆降解四氯乙烯試驗 42
3.6 數據分析之品質保證及品質管制(QA/QC) 43
3.6.1 檢量線製作 43
3.6.2 重複樣品分析 47
3.7 動力模式 48
第4章 結果與討論 50
4.1 石英砂及奈米鈀鐵基本性質測定 50
4.2 PCE降解批次試驗 52
4.2.1 PCE揮發背景試驗 52
4.2.2 不同pH值對奈米鈀鐵還原PCE之降解效果 54
4.2.3 奈米鈀鐵還原降解PCE過程中監測項目之濃度變化 56
4.2.3.1不同pH值降解PCE之pH變化 56
4.2.3.2 pH 8-9間不同pH值降解PCE之氧化還原電位變化 58
4.2.3.3 不同pH值降解PCE之導電度變化 58
4.2.3.4 不同pH值降解PCE之總鐵與Fe2+濃度變化 60
4.2.3.5 不同pH值降解PCE之Cl-釋出情形 60
4.2.4 批次實驗動力參數 62
4.2.5 副產物之鑑定 63
4.3 砂箱多孔介質傳輸試驗及PCE降解試驗 64
4.3.1 追蹤劑試驗 64
4.3.2 四氯乙烯傳輸試驗 69
4.3.3 奈米鈀鐵反應牆降解PCE試驗 70
4.3.4 電解加強奈米鈀鐵反應牆降解PCE試驗 78
4.4 反應前後SEM-EDS與FTIR測定 84
4.4.1 反應前後奈米顆粒SEM-EDS元素分析 84
4.4.2 傅立葉紅外線光譜儀分析 89
第5章 結論與建議 91
5.1 結論 91
5.1.1 奈米鈀鐵基本特性分析 91
5.1.2 奈米鈀鐵還原降解PCE之批次試驗 91
5.1.3 多孔介質傳輸及PCE降解實驗 92
5.1.4反應前後奈米鈀鐵SEM-EDS與FTIR測定 93
5.2 建議 93
參考文獻 94
附錄 104
作者簡介 123

王桂人,2003,以零價鐵技術處理地下水中三氯乙烯及四氯乙烯之研究,碩士論文,逢甲大學,環境工程與科學研究所,台中。
王興睿、石柏岡、張文亮,2011,「應用追蹤劑試驗於牡蠣殼礫間接觸水質淨化系統之人工濕地設計與延散效應分析」,農業工程學報,第57卷,第3期,第17-31頁。
中興工程顧問社,2000,土壤與地下水污染整治標準及處理技術之現況評估。
田福助,1987,電化學-理論與應用,高立圖書股份有限公司,台北。
尹邦躍,2002,奈米時代,五南圖書出版股份有限公司,台北。
行政院環境保護署,2012,土壤及地下水污染整治網http://sgw.epa.gov.tw/public/index.asp
行政院勞工安全委員會,2012,物質安全資料表,http://ghs.cla.gov.tw/CHT/intro/search.aspx
行政院經濟部水利署,2012,地下水觀測網http://140.112.190.183/index.php
行政院勞工安全委員會勞工安全衛生研究所,1997,應用非侵入性生物指標方法以檢測四氯乙烯之職業暴露程度(一)。
江姿幸,2005,滲透性反應牆對於砷污染土壤進行電動力法復育影響之研究,碩士論文,國立中山大學,環境工程研究所,高雄。
吳先琪,陳世裕,程淑芬等,2002,「以健康風險管理為依據之含氯有機化合物污染場址地下水復育技術及決策支援系統架構之研發-子計劃四:金屬還原技術用於含氯有機化合物污染場址復育之機制及評估預測模式(III) 」,行政院國家科學委員會補助專題研究計劃成果報告,計畫編號:NSC 90-2621-Z-002-034。
林財富,洪旭文,2000,「現地化學處理方法之發展現況」,土壤及地下水污染整治技術研究成果發表會論文集,第195-212頁。
林財富,2002,「土壤與地下水物理化學與熱處理整治技術之發展現況」,環保月刊第九期,第87-99頁。
林佩君,2004,整合零價金屬與電動力法復育有機污染土壤-以四氯乙烯為例,碩士論文,朝陽科技大學,環境工程與管理系,台中。
林育暄,2007,奈米零價鐵搭配過硫酸鹽還原氧化脫氯水中三氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
林財富,2008,土壤與地下水污染整治-原理與應用,中華民國環境工程學會編印,台北。
林建宇,2011,分散性奈米鐵和鈀/鐵雙金屬粒子降解四氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
施周,張文輝,2006,環境奈米技術,五南圖書出版股份有限公司,台北。
徐國財,張立德,2004,奈米複合材料,五南圖書出版股份有限公司,台北。
張德光,2004,結合鈀化奈米鐵粉懸浮液與電動力法處理地下環境介質中之三氯乙烯,碩士論文,國立中山大學,環境工程研究所,高雄。
黃光照,李重賢,李美英,劉怡君,2004,奈米科技交響曲-物理篇,國立台灣大學出版中心,台北,第5頁。
黃永昌,2010,分散性奈米零價鐵處理地下水中四氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
連興隆,張偉賢,2002,「奈米級複合金屬應用於受有機氯汙染地下水復育之研究」,第二十七屆廢水處理技術研討會論文集,台北。
董瑞安,1992,微量含氯有機物在地下水中生物轉換及傳輸模式之研究,博士論文,國立台灣大學,環境工程研究所,台北。
劉志忠,2006,零價鐵反應牆應用於三氯乙烯還原脫氯之整合研究,博士論文,國立中央大學,環境工程研究所,桃園。
劉興鑑,孫逸民,陳玉舜,趙敏勳,謝明學,2007,儀器分析,全威圖書有限公司,台北。
郭子彥,2009,奈米鐵反應牆結合界面活性劑與電動力法處理地下環境介質中四氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
蔡文田,1992,「含氯有機溶劑之毒性及新陳代謝機制」,工業污染防治,第11卷,第3期,第175-187頁。
薒欣怡,1999,三氯乙烯與四氯乙烯對人類肺癌細胞之毒性研究,碩士論文,國立中央大學,生命科學研究所,桃園。
蔡政勳,2000,零價鐵反應牆處理三氯乙烯污染物之反應行為研究,碩士論文,國立中央大學,環境工程研究所,桃園。
蔡浩文,2005,零價鐵提升電動力技術復育六價鉻污染高嶺土之小型模場研究,碩士論文,義守大學,材料科學與工程學系,高雄。
鄭雅文,2006,TX-100搭配電解加強奈米鐵反應墻處理地下水中三氯乙烯之研究,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。
Chang, J.H., Cheng, S.F., 2006, “The Remediation Performance of a Specific Electrokinetics Integrated with Zero-Valent Metals for Perchloroethylene Contaminated Soils,”Journal of Hazardous Materials, Vol. 131, pp. 153-162.
Cheng, I.F., Fernando, Q., Korte, N., 1997, “Electrochemical Dechlorination of 4-Chlorophenol to Phenol,”Environmental Science and Technology, Vol. 31, No. 4, pp. 1074-1078.
Dong, T.T., Luo, H., Wang, Y., Hu, B., Chen, H., 2011, “Stabilization of Fe-Pd Bimetallic Nanoparticles with Sodium Carboxymethyl Cellulose for Catalytic Reduction of Para-Nitrochlorobenzene in Water,” Desalination, Vol. 271, pp. 11-19.
Elimelech, M., Jia, X., Gregory, J., Williams, R., 1995, Particle Deposition and Aggregation: Measurement, Modeling, and Simulation, Butterworth-Heinemann, Oxford.
Everett, D.H., 1989, Basic Principles of Colloid Science, The Royal Society of Chemistry, London.
Fatisson, J., Ghoshal, S., Tufenkji, N., 2010, “Deposition of Carboxymethylcellulose Coated Zero-Valent Iron Nanoparticles onto Silica: Roles of Solution Chemistry and Organic Molecules,” Langmuir, Vol. 26, pp. 12832–12840.
Gavaskar, A.R., Gupta, N., Sass, B.M., Janosy, R.J., Q’Sullivan, D., 1998, Permeable Barriers for Groundwater Contamination: Design, Construction and Monitoring, 1sd ed., Battelle Press, Columbus.
Gillham, R.W., O’Hannesin, S.F., 1994, “Enhanced Degradation of Halogenated Aliphatics by Zero-Valen Iron,” Ground Water, Vol. 32, pp. 958-967.
Gramham, L.J., Jovanovic, G., 1999, “Dechlorination of P-chlorophenol on a Pd/Fe Catalyst in a Magnetically Stabilized fluidized bed; Implications for Sludge and Liquid Remediation,”Chemical Engineering Science, Vol. 54, pp. 3085-3093.
Guo, H., Lee, S.C., Chan, L.Y., Li, W.M., 2004, “Risk Assessment of Exposure to Volatile Organic Compounds in Different Indoor Environments,” Environmental Research, Vol. 94, pp.57-66.
He, F., Zhao, D., 2005, “Preparation and Characterization of a new Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water,”Environmental Science and Technology, Vol. 39, pp. 3314-3320.
He, F., Zhao, D. Y., 2007a, “Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers,”Environmental Science and Technology, Vol. 41, pp. 6216-6221.
He, F., Zhao, D.Y., Liu, J.C., Roberts, C.B., 2007b, “Stabilization of Fe-Pd Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Transport and Dechlorination of Trichloroethylene in Soil and Groundwater,”Journalof Industrial and Engineering Chemistry, Vol. 46, pp.29-34.
He F., Zhao D.Y., 2008, “Hydrodechlorination of Trichloroethene Using Stabilized Fe-Pd Nanoparticles: Reaction Mechanism and Effects of Stabilizers, Catalysts and Reaction Conditions,”Applied Catalysis B, Vol. 84, pp. 533-40.
Josephson, J., 1986, “Implementing Superfund,”Environmental Science and Technology, Vol. 20, pp. 23.
Kim, Y.H., Carraway, E.R., 2000, “Dechlorination of Pentachlorophenol by Zero Valent Iron and modifiedzero Valent Irons,” Environmental Science and Technology, Vol. 34, pp. 2014-2017.
Korte, N.E., Zutman, J.L., Schlosser, R.M., Liang, L., Gu, B., Fernando, Q., 2000, “Field Application of Palladized Iron for the Dechlorination of Trichloroethene,” Waste Management, Vol. 20, pp. 687-694.
Lawrence, H.L., Jean, C.P., 2001, “Hepatic and Renal Toxicities Associated with Perchloroethylene,”Pharmacological Reviews, Vol. 53, pp. 177-208.
Lien, H.L., Elliott, D.W., Sun, Y.P., Zhang, W.X., 2006, “Recent Progress in Zero-Valent Iron Nanoparticles for Groundwater Remediation,” Journal of Environmental Engineering, Vol. 16, No. 6, pp. 371-380.
Mallouk, T.E., Ponder, S.M., Darab, J.G., 2000, “Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported, Nanoscale Zerovalent Iron. , ” Environmental Science and Technology, Vol. 34, pp. 2564-2569.
Matheson, L.J., Tratnyek, P.G., 1994, “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal,”Environmental science and technology, Vol. 28, No.12, pp, 2045-2053.
Moen, B.E., Hollund, B.E., 2000, “Exposure to Organic Solvents Among Car Painters in Bergen, Norway, ”Annals of Occupational Hygiene, Vol. 44, pp. 185-189.
Muftikian, R., Fernando, Q., Korte, N., 1995, “A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water, ”Water Research, Vol. 29, pp. 2432-2439.
NRC, 1994, Alternatives for Groundwater Cleanup, National Academy Press, Washington, DC.
Nyer, E.K., Fam, S., Kidd, D.F., Palmcr, P.L., Bocttcheer, G., Crossman, T. L., Suthersan, S.S., 1996, “In-Situ Treatment,”pp. 310-314, CRC Press, Inc., Boca Raton, Florida.
Otterstedt, J., Brandreth, D.A., 1998, Small Particles Technology, Plenum Press, New York.
Phenrat, T., Kim, H.J., Fagerlund, F., Illangasekare, T., Tilton, R.D., Lowry, G.V., 2009, “Particle Size Distribution, Concentration, and magnetic attraction affect transport of polymer-modified Fe-0 nanoparticles in sand columns,”Environmental Science and Technology, Vol. 43, pp. 5079-5085.
Phenrat, T., Saleh, N., Sirk, K., Kim, H.J., Tilton, R.D., Lowry, G.V., 2008, “Stabilization of Aqueous Nanoscale Zerovalent Iron Dispersions by Anionic Polyelectrolytes: Adsorbed Anionic Polyelectrolyte Layer Properties and their Effect on Aggregation and Sedimentation,” Journal of Nanopartixle Research, Vol. 10, 795-814.
Ritter, K., Odziemkowski, M.S., Gillham, R.W., 2002, “An In Situ Study of the Role of Surface Films on Granular Iron in the Permeable Iron Wall Technology,”Journal of Contaminant Hydrology, Vol. 55, No. 2, pp. 87-111.
Rosensweig, R.E., 1985, Ferro Hydrodynamics, Cambridge Univ. Press., New York.
Powell, R.M., Puls, R.W., 1997, Permeable Reactive Subsurface Barriers for Interception and Remediation of Chlorinated Hydrocarbon and Chromium (VI) Plumes in Ground Water, U.S. EPA Remedial Technology Fact Sheet. EPA-600-F-97-008.
Schreier, C.G., Reinhard, M., 1995, “Catalytic Hydrodehalogenation of Chlorinated Ethylenes Using Palladium and Hydrogen for the Treatment of Contaminated Water,” Chemosphere, Vol. 31, No. 6, pp. 3475-3487.
Scherer, M.M., Balko, B.A., Gallagher, D.A., Tratnyek, P.G., 1998, “Correlation Analysis of Rate Constants for Dechlorination by Zero-Valent Iron,”Environmental Science and Technology, Vol. 32, No. 19, pp. 3026-3033.
Scherer, M.M., Richter, S., Valentine, R.L. Alvarez, P.J.J., 2000, “Chemistry and Microbiology of Permeable Reactive Barriers for In Situ Groundwater Clean Up,”Environmental Science and Technology, Vol. 30, No. 3, pp. 364-411.
Shih, Y.H., Hsu, C.Y., Su, Y.F., 2011, “Reduction of hexachlorobenzene by nanoscale zero-valent iron: Kinetics, pH effect, and degradation mechanism,” Separation and Purification Technology, Vol. 76, pp. 268-274.
Smith, M.B., March, J., 2001, Advanced organic chemistry: reactions, mechanisms, and structure, 5th ed.; Wiley-Interscience: New York.
Spektroskopische Tools/Spectroscopic Tools, 2012, http://www.science -and-fun.de/tools/
Stumm, W., Morgan, J.J., 1996, Aquatic chemistry, 3rd Edition, John Wiley &; Sons, Inc.,Wiley Interscience, New York.
Su, C., Puls, R.W., 1999, “Kinetics of Trichloroethene Reduction by Zerovalent Iron and Tin: Pretreatment Effect, Apparent Activation Energy, and Intermediate Products,”Environmental Science and Technology, Vol. 33, No. 1, pp. 163-168.
U.S. EPA., 2002, Field Applications of in Situ Remediation Technologies: Permeable Reactive Barriers, Office of Solid Waste and Emergency Response, Technology Innovation Office.
Westrick, J.J., Mello, J.W., Thomas, R.F., 1984, “The groundwater supply survey,” Journal American Water Works Assonciation, Vol. 76, pp. 52-59.
Wang, J.D., Chen, J.D., 1993, “Acute and Chronic Neurological Symptoms among Paint Workers Exposed to Mixtures of Organic Solvents,” Environmental Research, Vol. 61, pp. 107-116.
Wang, C.B., Zhang, W.X., 1997, “Synthesizing Nanoscale Iron Particle for Rapid and Complete Dechlorination of TCE and PCBs,” Environmental Science and Technology, Vol. 31, pp. 2154-2156.
Wang, F.I., Kuo, M.L., Shun, C.T., Ma, Y.C., Wang, J.D., Ueng, T.H., 2002, “Chronic Toxicity of a Mixture of Chlorinated Alkanes and Alkenes in ICR Mice,”Journal of toxicology and environmental health part A, Vol. 65, pp.279-291.
Wei, H., Li, K.B., Tong, S.P., Liu, W.P., 2004, “Reductive Dechlorination of Atrazine by Ni/Fe Bimetallic Particles,”Environmental Sciences, Vol. 25, No. 1, pp. 154-157.
Weng, C.H., Lin, Y.T., Lin, T.Y., Kao, C.M., 2007,“Enhancement of Electrokinetic Remediation of Hyper-Cr(VI) Contaminated Clay by Zero-Valent Iron,”Journal of Hazardous Materials, Vol. 149, pp. 292–302
William, A.A., Roberts, A.L., 2000, “Patways and Kinetics Chlorinatrd Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles,” Environmental Science and Technology, Vol. 34, No. 9, pp. 1794-1805.
Xu, J., Lv, X., Li, J., Li, Y., Shen, L., Zhou, H., Xu, X., 2012, “Simul- taneous adsorption and dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles with multi-walled carbon nanotube support,” Journal of Hazardous Materials, Vol. 225-226, pp. 36-45.
Xu, Y., Zhang, W.X., 2000, “Subcolloidal Fe/Ag Particles for Reductive Dehalogenation of Chlorinated Benzenes,”Industrial and Engineering Chemistry Research, Vol, 39, No. 7, pp. 2238-2244.
Yuan, C, Chiang, T.S., 2008, “Enhancement of Electrokinetic Remediation of Arsenic Spiked Soil by Chemical Reagents,”Journal of Hazardous Materials, Vol. 152, pp. 309-315.
Yuan, S., Long, H., Xie, W., Liao, P., Tong, M., 2012, “Electrokinetic Transport of CMC-Stabilized Pd/Fe Nanoparticles for the Remediation of PCP-Contaminated Soil,”Geoderma, Vol. 185-186 , pp. 18-25.
Zhang, W.X., Wang, C.B., Lien, H.L., 1998, “Treatment of Chlorinated Organic Contaminants with Nanoscale Bimetallic Particles,” Catalysis Today, Vol. 40, pp. 387-395.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top