|
[1] L. K. Branski, G. G. Gauglitz, D. N. Herndon, and M. G. Jeschke, “A reviewof gene and stem cell therapy in cutaneouswound healing,” Burns, vol. 35, no. 2, pp. 171–180, Mar. 2009. [2] M. Ochoa, R. Rahimi, and B. Ziaie, “Flexible sensors for chronic wound management.,” IEEE Rev. Biomed. Eng., vol. 7, pp. 73–86, Jan. 2014. [3] S. Schreml, R. J. Meier, O. S. Wolfbeis, M.Landthaler, R.-M. Szeimies, and P. Babilas, “2D luminescence imaging of pH in vivo.,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, no. 6, pp. 2432–7, Feb. 2011. [4] Sridhar, Vijayalakshmi, and Kenichi Takahata. "A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer." Sensors and Actuators A: Physical 155.1, pp.58-65, 2009. [5] Meier, Robert J., et al. "Simultaneous photographing of oxygen and pH in vivo using sensor films." Angewandte Chemie International Edition 50.46, pp.10893-10896, 2011. [6] Trupp, S., et al. "Development of pH-sensitive indicator dyes for the preparation of micro-patterned optical sensor layers." Sensors and Actuators B: Chemical 150.1, pp.206-210, 2010. [7] Schreml, Stephan, et al. "2D luminescence imaging of pH in vivo." Proceedings of the National Academy of Sciences 108.6, pp. 2432-2437, 2011. [8] Webster, John G., and Halit Eren, eds. Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement. Vol. 1. CRC press, 2014. [9] C. M. Nguyen, W.-D. Huang, S. Rao, H. Cao, U. Tata, M. Chiao, and J.-C. Chiao, “Sol-Gel iridium oxide-based pH sensor array on flexible polyimide substrate,” IEEE Sens. J., vol. 13, no. 10, pp. 3857–3864, Oct. 2013. [10] Olthuis, Wouter. "Chemical and physical FET-based sensors or variations on an equation." Sensors and Actuators B: Chemical 105.1, pp.96-103, 2005. [11] Gerlach, Gerald, et al. "Chemical and pH sensors based on the swelling behavior of hydrogels." Sensors and Actuators B: Chemical 111, 555-561, 2005. [12] A. Safavi and M. Bagheri, “Novel optical pH sensor for high and low pH values,” Sens. Actuators B, Chem., vol. 90, nos. 1–3, pp. 143–150, Apr. 2003. [13] D. Sharp, “Printed composite electrodes for in-situ wound pH monitoring,” Biosens. Bioelectron., vol. 50 C, pp. 399–405, Jul. 2013. [14] K. G. Kreider, M. J. Tarlov, and J. P. Cline, “Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides,” Sensor Actuat. B, Chem., vol. 28, no. 3, pp. 167–172, 1995. [15] S. Yao, M. Wang, and M. Madou, “A pH electrode based on meltoxidized iridium oxide,” J. Electrochem. Soc., vol. 148, no. 4, pp. 29–36, Dec. 2001. [16] B. Ziaie, A. Baldi, M. Lei, Y. Gu, and R. A. Siegel, “Hard and soft micromachining for BioMEMS: Review of techniques and examples of applications in microfluidics and drug delivery,” Adv. Drug Deliv. Rev., vol. 56, no. 2, pp. 145–172, Feb. 2004. [17] G. Urban, G. Jobst, F. Keplinger, E. Aschauer, O. Tilado, R. Fasching, and F. Kohl, “Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications,” Biosens. Bioelectron., vol. 7, no. 10, pp. 733–739, Jan. 1992. [18] P. J. Kinlen, J. E. Heider, and D. E. Hubbard, “A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode,” Sens. Actuators B, Chem., vol. 22, no. 1, pp. 13–25, Oct. 1994. [19] M. Yuqing, C. Jianrong, and F. Keming, “New technology for the detection of pH,” J. Biochem. Biophys. Methods, vol. 63, no. 1, pp. 1–9, Apr. 2005. [20] W.-D. Huang, H. Cao, S. Deb, M. Chiao, and J. C. Chiao, “A flexible pH sensor based on the iridium oxide sensing film,” Sens. Actuators A, Phys., vol. 169, no. 1, pp. 1–11, Sep. 2011. [21] Osaka, Akiyoshi, Toru Takatsuna, and Yoshinari Miura. "Iridium oxide films via sol-gel processing." Journal of non-crystalline solids 178, pp. 313-319, 1994. [22] Määttänen, Anni, et al. "A low-cost paper-based inkjet-printed platform for electrochemical analyses." Sensors and Actuators B: Chemical 177, pp. 153-162, 2013. [23] Natan, M. J.; Mallouk, T. E.; Wrighton, M. S. “pH-Sensitive WO3-Based Microelectrochemical Transistor,” J. Phys. Chem. 1987, 91, 648-654 [24] M. M. Ayad, N. a. Salahuddin, M. O. Alghaysh, and R. M. Issa, “Phosphoric acid and pHsensors based on polyaniline films,” Curr. Appl. Phys., vol. 10, no. 1, pp. 235–240, Jan. 2010. [25] D. K. Kampouris, R. O. Kadara, N. Jenkinson, and C. E. Banks, “Screen printed electrochemical platforms for pHsensing,” Anal.Methods, vol. 1, no. 1, pp. 25–28, 2009. [26]W.D. Huang, Sanchali Deb, Y.S. Seo, Smitha Rao, Mu Chiao, and J.C. Chiao, ” A Passive Radio-Frequency pH-Sensing Tag for Wireless Food-Quality Monitoring” IEEE Sensors Journal, vol.12, 3, pp.487-495, 2012. [27] Santos, L., Neto, J. P., Crespo, A., Nunes, D., Costa, N., Fonseca, I. M., ... & Fortunato, E., WO3 Nanoparticle-Based Conformable pH Sensor. ACS applied materials & interfaces, 6(15), pp.12226-12234, 2014. [28] Guo, Zi-Li, et al. "Characteristic improvement of inkjet printed Ag interconnects using tape on-off and mirror-reaction processes." Physical and Failure Analysis of Integrated Circuits (IPFA), 2015 IEEE 22nd International Symposium on the. IEEE, 2015.
|