跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 21:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃鴻一
研究生(外文):Hong-Yi Huang
論文名稱:主題一:CHB2Σ-(v’=1)的轉動及振動能量轉移效應主題二:利用腔體震盪吸收光譜法偵測含溴分子光分解後,溴分子的振動分佈
論文名稱(外文):Topic I:Rotational and vibrational energy transfer effect of CH B2Σ-(v’=1)Topic II:Vibrational distribution of Br2 molecule following photo-dissociation of bromine containing molecules by using cavity ring down absorption spectroscopy.
指導教授:林金全林金全引用關係
指導教授(外文):King-Chuen Lin
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:188
中文關鍵詞:腔體振盪吸收法轉動及振動能量轉移雷射光譜CH自由基
外文關鍵詞:rotational and vibrational energy transfercavtiy ring down absorption spectroscopylaser spectroscopyCH radical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這本論文主要分成兩個各自獨立的部分,每一部分都包含二章。
在第一部分的第一章介紹了一些光譜及傅立葉轉換紅外線光譜法的背景知識。在第一部分的第二章,研究CH 2Σ- (v’=1)自由基在與Ar, CO, 和N2O碰撞後的振動及轉動能量轉移的效應。我們用激發-偵測的技術來研究振動及轉動能量轉移速率。我們得到轉動能量轉移速率普遍大於振動能量轉移速率;轉動能量轉移速率的數量級在10-10 ~ 10-11 cm3 molecule-1 s-1 之間,而振動能量轉移速率的數量級在10-11 ~10-12 cm3 molecule-1 s-1 之間。我們發現對振動能量轉移速率而言,它和轉動量子數是無關的;轉動能量轉移方面,對CH 2Σ- (v’=1)自由基,我們發現在一次碰撞的情況下,會有多量子(multi-quantum)轉移的情況發生。大致上來說,振動及轉動能量轉移的速率,是N2O > CO > Ar,我們認為是多原子效應(polyatomic effect)及永久偶極矩(permanent dipole)所造成的。
在第二部分的第一章,我們介紹了腔體振盪吸收光譜法(CRDAS)的基本原理。在第二部分的第二章,我們成左漣Q用腔體振盪吸收光譜法得到純的溴分子的連續吸收截面積(continuous absorption cross section)。接著,我們研究溴仿(CHBr3)及二溴甲烷(CH2Br2)在被248nm光分解後,溴分子的量子產率及初生態的振動分布。在過去的研究中,大部分的研究團隊都認為最主要的光分解通道為解離一個溴原子;但我們利用腔體振盪吸收光譜法,成它a偵測到了另一個光分解的通道:溴分子的解離通道。我們得到溴分子的量子產率分別為0.23±0.05及0.26±0.07。;另一方面我們發現在溴仿光分解後所得到的溴分子是屬於熱振動的分布(vibrational-hot distribution)。我們認為這種光分解所得的溴分子處於熱振動的分布,是來自於三溴甲烷或二溴甲烷吸收248 nm後,從激發的電子能態(excited electronic states)經由內轉換(internal conversion)和高振動態的電子基態(highly vibrational levels of ground state)偶合,進而分解成產物。我們亦有搭配理論計算從能量的觀點去証實產生溴分子的這個解離通道確實可以發生。


Part I
In this thesis, it will be separated into two individual parts: part I and part II. Each part has two chapters.
In the chapter 1 of part I, some basic background of spectroscopy and Fourier transform infrared method is illustrated. And in the chapter 2 of part I, the fine state-resolved rotational and vibrational energy transfer of CH B2Σ- (v’=1, N) by collisions with Ar, CO, and N2O is illustrated. It is the first time to observe the rotational energy transfer and vibrational energy transfer processes of a specific fine state for B 2Σ- (v’=1) of CH radical. We use pump-probe technique to determine RET and VET rate constants of CH B (v’ = 1, 0≦ N ≦ 6) with collisions of Ar, CO, and N2O. The RET is anticipated to be larger than VET for each collider. The determined RET rate constants range from 10-11 to 10-10 cm3 molecule-1 s-1, while the determined VET rate constants range from 10-12 to 10-11 cm3 molecule-1 s-1. The relative values of RET and VET rate constants are consistent with the results founded by Cooper and Whitehead. The findings of multi-quantum changing within single collision suggest that the collisions possibly dominated by the long-range attractive force. The k’VET shows no rotational quantum number dependence for these three quenching gases. This conclusion is the same as the results reported previously by Crosley et al. and Whitehead et al.
The kVET of N2O is three times larger than that of CO and nine times larger than that of Ar, respectively. This result is related to polyatomic effect, permanent dipole moment, and inefficient vibration-translation transfer. The number of internal degrees of freedom of N2O is larger than that of CO and Ar, therefore N2O can remove more energy than CO and Ar within single collision. In other words, N2O is more efficient than CO and Ar. Polyatomic effect and permanent dipole moment play a role in vibration and rotational energy transfer process.
Part II
In the chapter 1 of part II, the basic working principle of cavity ring-down absorption spectroscopy (CRDAS) is introduced. In the first section in the chapter 2 of part II, the total continuous absorption which includes A – X, B – X, and C – X transition of pure diatomic bromine is obtained by using CRDAS. In the second section, the primary photodissociation channels of CHBr3 and CH2Br2 which is ignored in the past studies have been investigated.
CHBr3 + hν -->�� CHBr + Br2
CH2Br2 + hν -->�� CH2 + Br2
The quantum yields of Br2 are found to be 0.23±0.05 and 0.26±0.07 following photodissociation of CHBr3 and CH2Br2 at 248nm, respectively. According to the absorption spectrum, the nascent vibrational distribution can be obtained. The bromine molecules resulted from photodissociation of CHBr3 or CH2Br2 at 248 nm are both lying at a vibrationally hot distribution. The excited parent molecules (CHBr3 and CH2Br2) may couple into highly vibrational levels of their electronic ground state via internal conversion, which could lead to vibrationally hot Br2 photofragment.


Contents
Acknowledgments..................................................................................IV
Chinese Abstract………………………………………………………VI
Abstract………………………………………………………………VIII
Figure Captions…………………………………………………………X
Table Captions……………………………………………………….XVI

Part I

Chapter 1 Fundamental Theory……………………………………………………..1
1.1 Fundamental principles of molecular spectroscopy………....................2
1.1.1 Diatomic molecules…………………………………………………..2
(1) Hund’s coupling case (a)……………………………………………6
(2) Hund’s coupling case (b)……………………………………………8
(3) Hund’s coupling case (c)…………………………………………...10
(4) Hund’s coupling case (d)…………………………………………..11
1.1.2 Selection rules……………………………………………......................15
1.2 The principles of step-scan Fourier transform infrared spectrometer…………………………………………………………………..17
1.2.1 Introduction…………………………………………………………...17
1.2.2 Basic theory and instrument of Fourier transform
spectrometer…………………………………………………………..19
1.2.2.1 Michelson interferometer……………………………………..20
1.2.2.2 Mathematical Manipulation of Fourier Transform
…………………………………………………………………..22
1.2.2.3 The effect of sampling frequency on the resultant spectrum………………………………………………………26
1.2.2.4 Apodization function…………………………………………..30
1.2.2.5 Step scan………………………………………………………..31
References…………………………………………………………………………...34

Chapter 2 Investigation of RET and VET for CHB2Σ- (v’=1) radical……...........36
2.1 Introduction & Motivation…………………………………………………36
2.2 Experimental Section……………………………………………………….43
2.2.1 Vibrational energy transfer (VET)…………………………………..43
2.2.1.1 Experimental Setup……………………………………………43
2.2.1.2 Kinetic model…………………………………………………..48
2.2.1.3 Results………………………………………………………….49
2.2.1.4 Summary of VET………………………………………………60
2.2.2 Rotational energy transfer (RET)…………………………………....61
2.2.2.1Experimental Setup…………………………………………….61
2.2.2.2Kinetic model…………………………………………………...65
2.2.2.3 Results………………………………………………………….66
2.2.2.4 Summary of RET……………………………………………...74
2.3 Conclusions and Discussion of VET and RET………………………..…...74
2.3.1 Vibrational energy transfer…………………………………..………74
2.3.2 Rotational energy transfer…………………………………………....76
2.3.3Comparison of VET and RET………………………………………...82
2.4 Conclusion…………………………………………………..……………….83
References…………………………………………………………………………...85

Part II
Chapter 1 Cavity Ring Down Absorption Technique……………………………..88
1.1 Introduction…………………………………………………………..……..88
1.2 The Principle of Cavity-Ring Down spectroscopy…………………..…….91
1.3 Cavity Stability……………………………………………………………...96
1.4 Sensitivity of CRDS………………………………………………………..100
1.4.1 Theoretical Treatment………………………………………………...100
1.4.2 Factors which affect CRDS sensitivity………………………………102
(a) Laser Pulse Noise………………………………………………………103
(b) Laser bandwidth………………………………………….....................103
(c) Interference effects in CRDS………………………………………….105
(d) Laser transverse modes……………………………………………….106
(e) Cavity Mirrors…………………………………………………………106
References…………………………………………………………………...……..108

Chapter 2 Vibrational distribution of Br2 following photodissociation of multi-bromine atoms containing molecules by using cavity ring down absorption spectroscopy………………………………………………………………………..110
2.1 Introduction………………………………………………..………………110
2.2 The transitions of halogens in visible and near infrared region…………………………………………………………………….111
2.3 Experiment…………………………………………………………………116
2.3.1 The absorption spectrum of Br2……………………………….……..116
2.3.1.1 Experimental Setup…………………………………………..117
2.3.1.2 Results and Discussions……………………………………...123
2.3.1.3 Summary……………………………………………………...130
2.3.2 Investigation of Br2 produced from photolysis of CHBr3……..……..131
2.3.2.1 Introduction and Experimental Section………..…….131
2.3.2.2 Potential Energy Calculation……………………………..136
2.3.2.3 Results and Discussions…………………………………...137
2.3.2.4 Conclusions………………………………………………...156
2.3.3 Investigation of Br2 fragment produced from photodissociation of CH2Br2…………………………………………………………………...158
2.3.3.1 Introduction and Experimental section…………………..158
2.3.3.2 Results and Discussions…………………………………...159
2.3.3.3 Conclusions………………………………………………...164




















Part I
Chapter1 References:
1. Gerhard Herzberg, Molecular spectra and molecular structure I: Spectra of diatomic molecules (New York, second edition, 1951) chapter V, pp. 228-314.
2. J. Michael Hollas, High resolution spectroscopy (Butterworths, 1982), chapter 6, pp. 268-350.
3. B. P. Straughan and S. Walker, Spectroscopy volume 3,(Chapman and Hall, London, 1976), chapter 1, pp. 1-25.
4. R. S. Mulliken and S. Christy, Physic. Rev. 38, 87 (1931).
5. Jack. D. Graybeal, Molecular spectroscopy (McGraw-Hill, New York, 1988), chapter 14.
6. Peter R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy (John Wiley & Sons, New York, 1975), chapter 1-3.
7. John R. Ferraro and Louis J. Basile, Fourier Transform Infrared Spectroscopy volume 1 (Academic press, New York, 1978), chapter 1.
8. Peter R. Griffiths, Transform Techniques in Chemistry (Plenum press, New York and London, 1978), chapter 1-2.
9. Peter R. Griffiths and James A. de Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, New York, 1986), chapter 1-3.
10. Peter V. O’Neil, Advanced Engineering Mathematics (Fourth edition, Brooks/Cole, 1995), chapter 14-15.
11. Stanley I. Grossman, William R. Derrick, Advanced engineering mathematics (HarperCollins, New York, 1988), chapter 11.
12. Gold B. and Rader C. Digital Processing of Signals, (McGraw-Hill, New York, 1969).
13. Peter. R. Griffiths, Appl. Spectrosc., 29, 11 (1975).
14. M. Woodward, Probability and Information Theory, (Pergamon Press, New York, 1955).
15. R. Rammelsberg, B. Hebling, H. Chorongiewski, and K. Gerwert, Appl. Spectrosc. 51, 558, (1997).

Chapter 2 Reference:
1. K. J. Rensberger, M. J. Dyer, and R. A. Copeland, Appl. Opt., 27, 3679
(1988), and references therein.
2. D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare,
and C. H. Cruger, Science 259, 1726 (1993).
3. F. Melen, N. Grevesse, A. J. Sauval, C. B. Farmer, R. H. Norton, H.
Bredohl, and I. Dubois, J. Mol. Spectrosc. 134, 305 (1989), and
references therein.
4. O. Rydbeck, J. Elder, W. Irvine, A. Sume, and A. Hjalmarson,
Astrophys. 33, 315 (1974), and references therein.
5. M. R. Berman and M. C. Lin, Chem. Phys. 82, 435 (1983).
6. M. R. Berman, J. W. Fleming, A. B. Harvey, and M. C. Lin, Chem.
Phys. 73, 27 (1982).
7. T. Holger, M. John, and T. A. Craig, J. Phys. Chem. A 101, 1881
(1997).
8. J. L. Cooper and J. C. Whitehead, J. Phys. Chem. 98, 8274 (1994).
9. N. Brooks and W. H. Smith, Astrophys. J. 194, 513 (1974).
10. J. Brzozowski, P. Bunker, N. Elander, and P. Erman, Astrophys. J. 207,
414 (1976).
11. C. J. Randall, C. Murray, and K. G. McKendrick, Phys. Chem. Chem.
Phys. 2, 461-471 (2000).
12. J. L. Cooper and J. C. Whitehead, J. Chem. Soc., Faraday Trans.
88(16), 2323 (1992).
13. N. L. Garland and D. R. Crosley, Appl. Opt. 24 (23), 4229 (1985).
14. G. W. Lemire, M. J. McQuaid, A. J. Kotlar, and R. C. Soucs, J. Chem.
Phys. 99,91 (1993).
15. M. C. Heaven, J. Phys. Chem. 97, 8567 (1993).
16. C. C. Wang, Y. P. Chen, T. L. Chin, H. Y. Huang, and K. C. Lin, J.Chem. Phys. 112(23), 10204 (2000).
17. ‘Fourier Transform Infrared Spectrometry’, P. R. Griffiths and J. A.
de Haseth (1986).
18. J. Luque, R. J. H. Klein-Douwel, J. B. Jeffries, and D. R. Crosley,
Appl. Phys. B 71, 85 (2000).
19. M. G. Allen, R. D. Howe, R. K. Howe, and R. K. Hanson, Opt. Lett. 11,
126 (1985).
20. Y. C. Chen and M. S. Mansour, Appl. Phys. B 64, 599 (1997).
21. P. H. Paul and J.E. Dec, Opt. Lett. 19, 998 (1994).
22. V. Bergemann, W. Meier, D. Wolff, and W. Stricker, Appl. Phys. B 66,
489 (1998).
23. J. Brzozowski, P. Bunker, N. Elander, and P. Erman, Astrophys. J. 207,
414 (1976).
24. ‘LIFBASE 16’ is a database and spectral simulation for OH, OD, NO,
CH, CN, N2
+, SiH and CF radical which was developed by Jorge
Luque and David R. Crosley.
25. J. L. Cooper and J. C. Whitehead, J. Chem. Soc., Faraday Trans. 89,
1287 (1993)
26. R. D. Levine and R. B. Berstein, Molecular Reaction Dynamics and
Chemical Reactivity (Oxford University Press, New York, 1987), Chap.
6, pp. 300-337.
27. N. L. Garland and D. R. Crosley, Appl. Opt. 24 (23), 4229 (1985).
28. W. Bauer, B. Engelhardt, P. Wiesen, and K. H. Becker, Chem. Phys.
Lett. 158, 321 (1989).
29. K. H. Becker, H. H. Brenig, and T. Tatarczyk, Chem. Pys. Lett. 71, 242
(1980).
30. Paul L. Houston, Chemical Kinetics and Reaction Dynamics
(McGraw-Hill Higher, 2001), Chap. 8.
31. M. Kind, F. Stuhl, Y. R. Tzeng, M. H. Alexander, and P. J. Dagdigian,J. Chem. Phys. 114(10), 4479 (2001).
32. A. J. McCaffery, Z. T. Alwahabi, M. A. Osborne, and C. J. Williams, J.
Chem. Phys. 98(6), 4586 (1993).
33. M. A. Osborne and A. J. McCaffery, J. Chem. Phys. 101(7), 5604
(1994).
34. T. W. J. Whiteley and A. J. McCaffery, J. Phys. B: At. Mol. Opt. Phys.
29, 6133 (1996).
35. S. Clare, A. J. Marks, and A. J. McCaffery, J. Phys. Chem. A 104,
7181 (2000).
36. A. J. McCaffery, J. Chem. Phys. 113(24), 10947 (2000).
37. A. J. McCaffery and R. J. Marsh, J. Phys. Chem. A 104, 10442 (2000).
38. A. J. McCaffery and R. J. Marsh, J. Phys. B: At. Mol. Opt. Phys. 34,
R131 (2001).
39. R. J. Marsh and A. J. McCaffery, Chem. Phys. Lett. 341, 201 (2001).
40. A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 117(20), 9275
(2002).
41. R. J. Marsh and A. J. McCaffery, J. Phys. B: At. Mol. Opt. Phys. 36,
1363 (2003).
42. R. N. Dixon, D. P. Newton, and H. Rieley, J. Chem. Soc., Faraday
Trans. 2 83, 675 (1987).
43. J. Hohmann and F. Stuhl, J. Chem. Phys. 105, 3586 (1996).

Part II
Chapter 1 References:
1. J. M. Herbelin, J. A McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig,
D. J. Spencer, and D. J. Benard, Appl. Opt. 19, 144 (1980).
2. A. Kastler, Nouv. Rev. Optique. 5, 133 (1974).
3. D. Z. Anderson, J. C. Frisch, and C. S. Masser, Appl. Opt. 23, 1238
(1984).
4. A. O’Keefe, and D. A. G. Deacon, Rev. scient. Instrum., 59, 2544
(1988).
5. G. Berden, R. Peeters, and G. Meijer, Int. Rev. in Phy. Chem. 19(4), 565
(2000).
6. D. Romanini and K. K. Lehmann, J. Chem. Phys., 99, 6287 (1993).
7. A. O’Keefe, and O. Lee, Am. Lab., 21, 19 (1989).
8. J. J. Scherer, D. Voelkel, D. J. Rakestraw, J. B. Paul, C. P. Collier, R. J.
Saykally, and A. O’Keefe, Chem. Phys. Lett., 245, 273 (1995).
9. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem.
Phys. Lett., 264, 316 (1997).
10. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R.
Ashfold, J. Chem. Soc., Faraday Trans., 94(3), 337, (1998).
11. J. J. Scherer, J. B. Paul, A. O’keefe, and R. J. Saykally, Chem. Rev. 97,
25 (1997).
12. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, Rev.
Sci. Instrum. 66, 2821 (1995).
13. G. Meijer, M. G. H. Boogaarts, R. T. Jongma, D. H. Parker, M. A.
Wodtke, Chem. Phys. Lett. 217, 112 (1994).
14. P. Zalicki, R. N. Zare, J. Chem. Phys. 102, 2708 (1995).
15. J. T. Hodges, P. Looney, R. D. van Zee, Appl. Opt. 35, 4112 (1995).
16. D. Romanini, K. K. Lehmann, J. Chem. Phys. 102, 633 (1995).
17. Peter W. Milonni and Joseph H. Eberly, Lasers, (1988).
18. J. Martin, B. A. Paldus, P. Zalicki, E. H. Wahl, T. G. Owano, J. S.Harris Jr., C. H. Kruger, R. N. Zare, Chem. Phys. Lett. 258, 63 (1996).
19. Peter W. Milonni and Joseph H. Eberly, Lasers (John Wiley & Sons,
New York, 1988).
20. Yurii A. Anan’ev, Laser Resonators and the Beam Divergence
Problem (Adam Hilger press, New York, 1992), chapter 1~3.
21. R. W. F. Gross and J. F. Bott, Handbook of Chemical Lasers
(Wiley-Interscience Publication, New York, 1976), chapter 3.

Chapter 2 References:
1. H. Kuhn, Z. Phys. 39, 77 (1926).
2. W. Holzer, W. F. Murphy, and H. J. Bernstein, J. Chem. Phys. 52, 469
(1970)
3. J. A. Coxon, J. Mol. Spectrosc. 37, 39 (1971).
4. J. A. Coxon, J. Quant. Spectrosc. Radiat. Transfer. 12, 639 (1971).
5. F. Zaraga, N. S. Nogar, and C. B. Moore, J. Mol. Spectrosc. 63, 564
(1976).
6. M. A. A. Clyne, M. C. Heaven, J. C, and E. Martinez, J. C. S. Faraday
II, 76, 177 (1980).
7. R. F. Barrow, T. C. Clark, J. A. Coxon, and K. K. Yee, J. Mol.
Spectrosc. 51, 428 (1974).
8. R. S. Hozack, A. P. Kennedy, and K. B. McAffe, Jr. J. Mol. Spectrosc.
80, 239 (1980).
9. M. A. A. Clyne, M. C. Heaven, and S. J. Davis, J. C. S. Faraday II, 76,
961 (1980).
10. M. A. A. Clyne, M. C. Heaven, and E. Martinez, J. C. S. Faraday II,
76, 405 (1980).
11. P. Luc, J. Mol. Spectrosc. 80, 41 (1980).
12. M. C. Heaven, Chem. Soc. Rev. 15, 405 (1986).
13. G. P. Perram, D. A. Massman, and S. J. Davis, J. Chem. Phys. 99(9),
6634 (1993).
14. C. D. Holmberg, G. S. Williams, and G. P. Perram, J. Chem. Phys.
102(16), 6481 (1995).
15. T. A. Van Marter, Y. Lu, M. C. Heaven, E. Hwang, P. J. Dagdigian,
and J. Tellinghuisen, J. Mol. Spectrosco. 177, 311 (1996).
16. R. E. Franklin, C. D. Holmberg, J. R. Reynolds, and G. P. Perram, J.
Mol. Spectrosc. 184, 273 (1997).
17. C. Focsa, H. Li, and P. F. Bernath, J. Mol. Spectrosc. 200, 104 (2000).
18. R. S. Mulliken, Phys. Rev. 46, 549 (1934).
19. R. S. Mulliken, Phys. Rev. 57, 500 (1940).
20. R. S. Mulliken, J. Chem. Phys. 55, 288 (1971).
21. J. Tellinghuisen, J. Chem. Phys. 76(10), 4736 (1982).
22. R. J. Le Roy, R. Glen Macdonald, and G. Burns, J. Chem. Phys. 65,
1485 (1976).
23. T. G. Lindeman and J. R. Wiesenfeld, J. Chem. Phys. 70(06), 2882
(1979).
24. M. A. A. Clyne, M. C. Heaven, and J. Tellinghuisen, J. Chem. Phys.
76(11), 5341 (1981).
25. D. Maric, J. P. Burrows, and G. K. Moortgat, J. Photochem. Photobiol.
A: Chem., 83, 179 (1994).
26. T. A. Van Marter, Y. Lu, M. C. Heaven, and E. Hwang, J. Mole.
Spectrosc. 177, 311 (1996).
27. R. E. Franklin, C. D. Holmberg, J. R. Reynolds, and G. P. Perram, J.
Mole. Spectrosc. 184, 273 (1997).
28. M. J. Cooper, E. wrede, A. J. Orr-Ewing, and M. N. R. Ashfold, J.
Chem. Soc., Faraday Trans. 94, 2901 (1998).
29. C. Focsa, H. Li, and P. F. Bernath. J. Mole. Spectrosc. 200, 104
(2000).
30. A. O’Keefe, and D. A. G. Deacon, Rev. scient. Instrum., 59, 2544(1988).
31. J. E. Smedley, H. K. Haugen, and S. R. Leone, J. Chem. Phys. 87 (5),
2700 (1987).
32. R. J. Le Roy, R. G. Macdonald, and G. Burns, J. Chem. Phys. 65,
1485(1976).
33. M. J. Cooper, E. Wrede, A. J. Orr-Ewing and M. N. R. Ashold, J.
Chem. Soc., Faraday Trans. 94, 2901 (1998).
34. D. Xu, J. S. Francisco, J. Huang and W. H. Jackson, J. Chem. Phys.
117(6), 2578(2002).
35. R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr,
and M. J. Rossi, J. Troe, J. Phys. Chem. Ref. Data 26(3), 521 (1997).
36. D. Maric, J. P. Burrows and G. K. Moortgat, J . Photochem. Photobiol.
A: Chem., 83, 179 (1994).
37. J. S. Daniel, S. Solomon, R. W. Portmann, and R. R. Garcia, J.
Geophys. Res. –Atmos. 104, 23871 (1999).
38. L. A. Barrie, J. W. Bottenheim, R. C. Schnell, P. J. Crutzen, and R. A.
Rasmussen, Nature, 334, 138 (1988).
39. W. S. McGivern, O. Sorkhabi, A. G. Suits, A. Derecskei-Kovacs, and
S. W. North, J. Phys. Chem. A 104, 10085 (2000).
40. J. P. Simons and A. J. Yarwood, Trans. Faraday Soc. 57, 2167 (1961).
41. Y. R. Lee, C. C. Chen, and S. M. Lin, J. Chem. Phys. 118(23), 10494
(2003).
42. K. A. Peterson and J. S. Francisco, J. Chem. Phys. 117(13), 6103
(2002).
43. A. D. Becke, J. Chem. Phys. 98, 5648(1993).
44. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
45. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R.Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E.
Stratmann, J. C.Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K.
N. Kudin, M. C. Strain,O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C.Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G. A. Petersson, P. Y. Ayala, Q.Cui, K. Morokuma, D. K. Malick, A. D.
Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz,
B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.
Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A.Al-Laham, C. Y.
Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez,
M.Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98
Gaussian 98 FULL REF (Gaussian, Inc., Pittsburgh PA, 2001).
46. C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 94, 5523 (1990).
47. I. D. Hein., Database for Excitation-Emission-Spectra (EES) in
Combustion Research, http://www.ltk.mw.tu-muenchen.de/wwwlaser/AES/aes_home.htm
48. H. K. Haugen, E. Weitz, and S. R. Leone, J. Chem. Phys. 83,3402
(1985).
49. J. Tellinghuisen, J. Chem. Phys. 115, 10417 (2001).
50. T. Baer and W. L. Hase, Unimolecular Reaction Dynamics (Oxford
University Press, New York, 1996), chap. 9, pp. 361-363.
51. R. Schinke, Photodissociation Dynamics Spectroscopy and
Fragmentation of Small Polyatomic Molecules, chap. 10, pp.
251-255.
52. Y. L. Li, C. W. Lee, K. H. Leung, G. Z. He, and D. L. Phillips, Molec.
Phys. 100, 2659 (2002).
53. M. R. Cameron, S. A. Johns, G. F. Metha, and S. H. Kable, Phys.
Chem. Chem. Phys., 2, 2539 (2000).
54. J. C. Walton, J. Chem. Soc., Faraday Trans. 1 68 1559 (1972).
55. M. S. Park, T. K. Kim, S.-H. Lee, K.-H. Jung, H.-R. Volpp, and J.
Wolfrum, J. Phys. Chem. A 105, 5606 (2001).
56. S. R. Cain, R. Hoffmann, and E. R. Grant, J. Phys. Chem. 85, 4046
(1981).
57. U. Marvet, E. J. Brown, and M. Dantus, Phys. Chem. Chem. Phys., 2,
885 (2000).
58. U. Marvet, Q. Zhang, and M. Dantus, J. Phys. Chem. A, 102, 4111
(1998).
59. J. P. Stephen, and T.-R. Eugene, J. Phys. Chem. A 102, 6191 (1998).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top