跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李季娟
研究生(外文):Chi-Chuan Li
論文名稱:斑蝥素誘導人類上皮鱗狀癌 A431 細胞經由活化凋亡蛋白酶依賴訊息路徑誘導細胞凋亡
論文名稱(外文):Cantharidin induces apoptosis through activation of caspase-dependent signaling pathway in human epithelial carcinoma A431 cells
指導教授:鍾景光鍾景光引用關係
指導教授(外文):Jing-Gung Chung
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物科技學系碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:106
中文關鍵詞:斑蝥素人類上皮鱗狀癌A431細胞細胞凋亡細胞週期停滯凋亡蛋白?”怞s性
外文關鍵詞:Cantharidinhuman epithelial carcinoma A431 cellsapoptosiscell-cycle arrestcaspase-dependent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
斑蝥素是莞菁 (斑蝥,一種傳統的中藥) 的組成成分之一,為?衛?化合物的一種。目前已被證實,斑蝥素具有抗腫瘤、抗菌、防病毒和促進免疫活動的能力。無數研究已報告指出斑蝥素能誘導許多人類癌症細胞的細胞膜出泡、caspase 活化、DNA 斷裂,以及細胞週期的停滯。然而,沒有研究指出,斑蝥素能夠誘導人類上皮癌 A431 細胞凋亡。在本研究中,我們將調查 A431 細胞的細胞週期停滯和凋亡的分子機制。我們發現斑蝥素能夠使 A431 細胞的存活率下降,並有活性氧化物質 (ROS) 和胞內鈣離子 (Ca2 +) 增加的現象,粒腺體膜電位 (ΔΨm) 的降低及誘導 A431 細胞產生凋亡的現象。 斑蝥素也增加細胞凋亡途徑的蛋白表現量,如: Caspase-3、Caspase-8、Caspase-9、PARP 的活化、cytochrome c 和 Bax,但是 Mcl-1 和 Bcl-2 蛋白表現量的現象則有下降的趨勢。Annexin V的親和力檢測則顯示,A431 細胞對於凋亡顯著的增加有時間的依存性,並且經由 JNK 介導的 c-Jun 訊號路徑調控蛋白的表現量。我們使用特殊的 caspase 抑制劑預處理 A431 細胞,經處理斑蝥素後結果顯示,其存活率較單獨處理斑蝥素時有回升的現象。根據這些觀察,我們推測斑蝥素能經由活化 caspase 的依賴訊號路徑,誘導 A431 細胞產生細胞凋亡的現象。

Cantharidin (CTD) is one of the component from a traditional Chinese medicine named mylabris, and it is a type of terpenoid. It has been demonstrated that CTD possesses antitumor, antibiotic, antivirus and promotes immunity activities. Many studies have reported that CTD induced membrane blebbing, caspase activation, DNA fragmentation, cell cycle arrest in many human cancer cell lines. However, there is no report showing CTD induced apoptosis in human epithelial carcinoma A431 cells. In this study, we investigated the molecular mechanisms of apoptosis in A431 cells after exposed to CTD. We found that CTD decreased the percentage of cell viability, increased the levels of reactive oxygen species (ROS) and calcium (Ca2+) productions, decreased the level of mitochondrial membrane potential (ΔΨm) and triggered apoptosis in A431 cells. CTD increased the protein levels of cell death pathway such as the Caspase-3, -8, -9, PARP active form, cytochrome c and Bax, decreased the anti-apoptosis protein levels such as Mcl-1 and Bcl-2. Annexin V affinity assay was performed by flow cytometry and our results indicated that CTD significantly induced apoptosis in A431 cells in a time-dependent manner and it promoted the protein levels of JNK-mediated c-Jun signaling pathway. We used the specific caspase inhibitors to pre-treat A431 cells, and then exposed to CTD and results showed that CTD increased percentage of viable cells when compared to CTD treatment alone in A431 cells. Based on those observations, we suggest that CTD can induce apoptosis in A431 cells through the activation of caspase-dependent signaling pathways.

總目錄
總目錄---------------------------------------------------------------------I
圖目錄-------------------------------------------------------------------VII
表目錄---------------------------------------------------------------------X
致謝----------------------------------------------------------------------XI
縮寫表--------------------------------------------------------------------XII
中文摘要------------------------------------------------------------------XIV
英文摘要-------------------------------------------------------------------XV
第一章、前言-----------------------------------------------------------------1
第一節、研究背景----------------------------------------------------------1
一、癌症的生成--------------------------------------------------------1
二、人類上皮鱗狀癌 A431 細胞之介紹---------------------------------------2
三、斑蝥素 (Cantharidin) 之介紹----------------------------------------3
四、細胞凋亡 (Apoptosis) 之介紹----------------------------------------5
(一)、內在路徑 (Intrinsic pathway)--------------------------------5
(二)、外在路徑 (Extrinsic pathway)--------------------------------6
(三)、內質網壓力 (Endoplasmic Reticulum Stress)--------------------8
五、Mitogen-activated protein kinases (MAPKs) 之介紹------------------9
第二節、研究目的--------------------------------------------------------------10
第二章、研究方法--------------------------------------------------------------11
第一節、研究材料--------------------------------------------------------------11
一、細胞株來源--------------------------------------------------------11
二、藥品試劑----------------------------------------------------------11
三、儀器設備與器材-----------------------------------------------------16
第二節、研究設計---------------------------------------------------------------17
一、實驗設計流程---------------------------------------------------------------17
二、實驗方法-------------------------------------------------------------------18
(一)、藥物的配製 (斑蝥素;Cantharidin)--------------------------------------18
(二)、人類上皮鱗狀癌細胞株 (A431 cell) 細胞培養-------------------------------18
(三)、細胞的冷凍保存--------------------------------------------------------19
(四)、冷凍細胞的活化--------------------------------------------------------20
(五)、細胞存活率 (Cell Viability)------------------------------------------21
(六)、Annexin V affinity assay-------------------------------------------22
(七)、彗星試驗 (Comet assay)----------------------------------------------23
(八)、細胞核質濃縮現象 (DAPI 染色)-------------------------------------------26
(九)、DNA膠體電泳 (Agarose gel electrophoresis)---------------------------27
(十)、細胞週期 (Cell cycle) 分析-------------------------------------------30
(十一)、鈣離子 (Ca2+) 釋出的變化--------------------------------------------32
(十二)、活性氧化物質 (ROS) 產生之檢測----------------------------------------33
(十三)、粒線體膜電位 (ΔΨm) 之檢測-------------------------------------------34
(十四)、Caspase-3 活性測試 (Caspase-3 activity)---------------------------35
(十五)、Caspase-8 活性測試 (Caspase-8 activity)---------------------------37
(十七)、西方墨點法 (Western blot)------------------------------------------38
(十八)、活性氧化物質清除劑 (ROS scavenger) 之檢測----------------------------42
(十九)、鈣離子螯合劑 (Ca2+ chelator) 之檢測---------------------------------43
(二十)、粒線體膜電位抑制劑之檢測---------------------------------------------44
(二十一)、Caspase 抑制劑之檢測---------------------------------------------45
(二十二)、免疫螢光染色 (Immunofluorescence staining)-----------------------46
(二十三)、即時定量 PCR (Quantitative PCR Analysis)------------------------47
(二十四)、活體試驗--------------------------------------------------------49
(二十五)、統計分析--------------------------------------------------------50
第三章、研究結果--------------------------------------------------------------51
第一節、斑蝥素對人類上皮鱗狀癌 A431 細胞型態之變化----------------------------------51
第二節、斑蝥素對人類上皮鱗狀癌 A431 細胞存活率之影響--------------------------------52
第三節、斑蝥素對人類上皮鱗狀癌 A431 細胞誘導凋亡之影響------------------------------53
第四節、觀察斑蝥素對人類上皮鱗狀癌 A431 細胞之 DNA 受損影響-------------------------55
一、彗星試驗 (Comet assay)---------------------------------------------------55
二、DAPI 染色法 (DAPI staining)----------------------------------------------56
三、DNA膠體電泳 (DNA gel electrophoresis)-------------------------------------58
第五節、觀察斑蝥素對人類上皮鱗狀癌 A431 細胞之細胞週期影響---------------------------60
第六節、以西方墨點法探討斑蝥素對人類上皮鱗狀癌 A431 細胞週期蛋白之表現-----------------62
第七節、斑蝥素對人類上皮鱗狀癌 A431 細胞之活性氧化物質 (Reactive oxygen species, ROS) 之影響------------------------63
第八節、斑蝥素對人類上皮鱗狀癌 A431 細胞之粒線體電位 (Mitochondrial membrane potential, ΔΨm) 的影響-----------------65
第九節、斑蝥素對人類上皮鱗狀癌 A431 細胞活化 Caspase-3 的影響-----------------------------------------------------67
第十節、斑蝥素對人類上皮鱗狀癌 A431 細胞活化 Caspase-9 的影響----------------------------------------------------69
第十一節、斑蝥素對人類上皮鱗狀癌 A431 細胞活化 Caspase-8 的影響--------------------------------------------------71
第十二節、以西方墨點法探討斑蝥素對人類上皮鱗狀癌 A431 細胞凋亡蛋白與細胞週期相關蛋白的表現變化---------------------------73
第十三節、斑蝥素對預處理 ROS 清除劑之人類上皮鱗狀癌 A431 細胞存活率的影響--------------------------------------------76
第十四節、斑蝥素對預處理粒線體膜電位抑制劑之人類上皮鱗狀癌 A431 細胞存活率的影響-----------------------------------------77
第十五節、斑蝥素對預處理 caspase 抑制劑之人類上皮鱗狀癌 A431 細胞存活率的影響-----------------------------------------78
第十六節、斑蝥素對人類上皮鱗狀癌 A431 細胞內鈣離子 (Ca2+) 釋出的影響-------------------------------------------------80
第十七節、以西方墨點法探討斑蝥素對人類上皮鱗狀癌 A431 細胞內質網壓力路徑之相關調控蛋白表現量變化----------------------------82
第十八節、斑蝥素對預處理鈣離子螯合劑之人類上皮鱗狀癌 A431 細胞存活率的影響----------------------------------------------84
第十九節、以免疫螢光染色探討斑蝥素對人類上皮鱗狀癌 A431細胞中凋亡相關蛋白表現與轉移之影響----------------------------------85
第二十節、以西方墨點法探討斑蝥素對人類上皮鱗狀癌 A431 細胞內 MAPK 路徑之相關調控蛋白表現量變化----------------------------87
第二十一節、以 Quantitative PCR Analysis 探討斑蝥素對人類上皮鱗狀癌 A431 細胞之凋亡相關蛋白其mRNA表現------------------89
第二十二節、利用活體實驗檢測斑蝥素對人類上皮鱗狀癌 A431 細胞異位移植腫瘤抑制之能力---------------------------------------90
第四章、討論--------------------------------------------------------------------------95
第五章、結論-------------------------------------------------------------------------100
第六章、參考文獻----------------------------------------------------------------------102

圖目錄
圖一:民國 99 及 100 年台灣主要十大死因-------------------------------1
圖二:民國 99 及 100 年台灣主要十大癌症死亡率--------------------------2
圖三:斑蝥素 (Cantharidin) 之結構式---------------------------------3
圖四:Apoptosis 與 Necrosis 之不同---------------------------------7
圖五:外在、內在與其他相關凋亡路徑圖---------------------------------- 7
圖六:哺乳動物細胞中 UPR 訊號傳導路徑相關圖----------------------------9
圖七、本實驗研究流程圖----------------------------------------------17
圖八、利用倒立式相位差顯微鏡觀察 A431 細胞經斑蝥素處理 48 小時後細胞型態之變化-------------------------51
圖九、以 MTT assay 方法檢測當以斑蝥素處理 A431 細胞經過 24及 48 小時後細胞之存活率-------------------52
圖十、A431 細胞株經斑蝥素處理後細胞凋亡現象-------------------------------------------------------54
圖十一、不同濃度之斑蝥素對於 A431 細胞經處理後其 DNA 的片段拖尾程度----------------------------------56
圖十二、不同濃度之斑蝥素對於 A431 細胞處理後,其細胞內染色質凝集之現象---------------------------------58
圖十三、以不同濃度之斑蝥素處理 A431 細胞株後 DNA 斷裂之影響-----------------------------------------59
圖十四、A431 細胞株經斑蝥素處理後細胞週期的之影響變化圖與量化圖--------------------------------------61
圖十五、A431 細胞株經斑蝥素處理後,細胞週期相關調控蛋白之蛋白表現量變化--------------------------------62
圖十六、以流式細胞儀觀察 A431 細胞株經斑蝥素處理後 ROS 在細胞內的表現---------------------------------64
圖十七、以流式細胞儀觀察 A431 細胞株經斑蝥素處理後粒線體膜電位所受之影響-------------------------------66
圖十八、斑蝥素造成 A431 細胞活化 Caspase-3 的影響-------------------68
圖十九、斑蝥素造成 A431 細胞活化 Caspase-9 的影響-------------------70
圖二十、斑蝥素造成 A431 細胞活化 Caspase-8 的影響-------------------72
圖二十一、當 A431 細胞株經斑蝥素處理後以西方墨點法觀察粒線體路徑之相關蛋白表現量之變化---------------------75
圖二十二、斑蝥素對預處理 N-acetyl cysteine 之 A431 細胞的影響-------------------------------------76
圖二十三、斑蝥素對預處理 CsA 之 A431 細胞的影響----------------------- ----------------------------77
圖二十四、斑蝥素對預處理 Caspase 抑制劑之 A431 細胞存活率的影響--------------------------------------79
圖二十五、以流式細胞儀觀察A431 細胞株經斑蝥素處理隨時間的增加 Ca2+ 濃度的影響---------------------------81
圖二十六、斑蝥素對 A431 細胞內質網壓力路徑之相關調控蛋白表現量變化-------------------------------------83
圖二十七、斑蝥素對預處理 BAPTA-AM 之 A431 細胞的影響------------- ---------------------------------84
圖二十八、以免疫螢光染色探討斑蝥素對 A431細胞中凋亡相關蛋白表現與轉移之影響-------------------------------86
圖二十九、斑蝥素對 A431 細胞內 MAPK 路徑之相關調控蛋白表現量變化--------------------------------------88
圖三十、以Quantitative PCR Analysis 探討斑蝥素對 A431 細胞之凋亡相關蛋白其mRNA表現-------------------89
圖三十一、檢測斑蝥素對 A431 細胞異位移植腫瘤抑制能力之活體試驗-----------------------------------------94
圖三十二、斑蝥素誘導人類上皮鱗狀癌 A431 細胞株細胞凋亡可能路徑圖----------------------------------------101

表目錄
表一、Comet assay 使用之 buffer 配置----------------------------------------------25
表二、Agarose Gel 之配置----------------------------------------------------------29
表三、Cell cycle 使用所需之 PI 染劑配置----------------------------------------------31
表四、SDS-PAGE 下層膠 (Separating gel) 之配置與組成---------------------------------40
表五、SDS-PAGE 上層膠 (Stacking gel) 之配置與組成-----------------------------------41
表六:電泳緩衝液 (Electrophoresis running buffer)---------------------------------41
表七:轉漬緩衝液 (Transfer buffer)-----------------------------------------------41


1.台灣行政院衛生署.【http://www.doh.gov.tw/cht2006/index_populace.aspx】. (2011).
2.Rebbeck, T.R., Brown, P. H., Hawk, E. T. & Lerman, C. Cancer epidemiology, biomarkers & prevention, and cancer prevention research: two journals, a common goal. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 17, 2903-2905 (2008).
3.Sahdeo Prasad, E.M., Nidhi Nigam, Preeti Roy, Jasmine George and Yogeshwer Shukla. Induction of apoptosis by lupeol in human epidermoid carcinoma A431 cells through regulation of mitochondrial, Akt/PKB and NFκB signaling pathways. Cancer Biology & Therapy (2009).
4.Monga, J., Chauhan, C.S. & Sharma, M. Human epithelial carcinoma cytotoxicity and inhibition of DMBA/TPA induced squamous cell carcinoma in Balb/c mice by Acacia catechu heartwood. The Journal of pharmacy and pharmacology 63, 1470-1482 (2011).
5.Chin, T.W., Parry, R.L. & Donahoe, P.K. Human mullerian inhibiting substance inhibits tumor growth in vitro and in vivo. Cancer research 51, 2101-2106 (1991).
6.Graness, A., Hanke, S., Boehmer, F.D., Presek, P.Œ& Liebmann, C. Protein-tyrosine-phosphatase-mediated epidermal growth factor (EGF) receptor transinactivation and EGF receptor-independent stimulation of mitogen-activated protein kinase by bradykinin in A431 cells. Biochemical Society (2000).
7.Kim, M.H., Shim, K.S. & Kim, S.H. Inhibitory effect of cantharidin on osteoclast differentiation and bone resorption. Archives of pharmacal research 33, 457-462 (2010).
8.Honkanen, R.E. Cantharidin, another natural toxin that inhibits the activity of serinelthreonine protein phosphatases types 1 and 2A. Federation of European Biochemical Societies 330 (1993).
9.Li, W., Xie, L. & Chen, Z. Cantharidin, a potent and selective PP2A inhibitor, induces an oxidative stress-independent growth inhibition of pancreatic cancer cells through G2/M cell-cycle arrest and apoptosis. Cancer science 101, 1226-1233 (2010).
10.Huang, W.W., Ko, S. W., Tsai, H. Y. & Chung, J. G. Cantharidin induces G2/M phase arrest and apoptosis in human colorectal cancer colo 205 cells through inhibition of CDK1 activity and caspase-dependent signaling pathways. International journal of oncology 38, 1067-1073 (2011).
11.Cheng Chang, Jie Wu , Jin-mei Zhang & Zhu, Y.-q. Norcantharidin (NCTD) induces mitochondria mediated apoptosis in human HepG2 cells. African Journal of Biotechnology (2011).
12.Huan, S.K., Lee, H.H., Liu, D.Z., Wu, C.C. & Wang, C.C. Cantharidin-induced cytotoxicity and cyclooxygenase 2 expression in human bladder carcinoma cell line. Toxicology 223, 136-143 (2006).
13.Bonness, K., Aragon, I. V., Rutland, B. & Ofori-Acquah, S. Cantharidin-induced mitotic arrest is associated with the formation of aberrant mitotic spindles and lagging chromosomes resulting, in part, from the suppression of PP2A. Molecular Cancer Therapeutics 5, 2727-2736 (2006).
14.Rauh, R., Kahl, S., Boechzelt, H. & Bauer, R. Molecular biology of cantharidin in cancer cells. Chinese medicine 2, 8 (2007).
15.Nikbakhtzadeh, M.R.T., S. . Iranian Journal of Public Health 31, 113-117 (2002).
16.Maglio, D., Nightingale, C.H. & Nicolau, D.P. Production and resolution of cantharidin-induced inflammatory blisters. International journal of antimicrobial agents 22, 77-80 (2003).
17.Kanduc, D., Mittelman, A., Serpico, R. & Sinigaglia, E. Cell death: apoptosis versus necrosis (review). International journal of oncology 21, 165-170 (2002).
18.Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nature reviews. Molecular cell biology 9, 1004-1010 (2008).
19.Derradji, H. & Baatout, S. Apoptosis: a mechanism of cell suicide. In Vivo 17, 185-192 (2003).
20.Searle, J., Kerr, J.F. & Bishop, C.J. Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathology annual 17 Pt 2, 229-259 (1982).
21.Qiao, J., Lin, L. & Tianhong, W. Progress in research on apoptosis in filamentous fungi--a review. Acta microbiologica Sinica 48, 551-555 (2008).
22.Du, Y., Wang, K., Fang, H. & Li, J. Coordination of intrinsic, extrinsic, and endoplasmic reticulum-mediated apoptosis by imatinib mesylate combined with arsenic trioxide in chronic myeloid leukemia. Blood 107, 1582-1590 (2006).
23.Bratton, S.B. & Cohen, G.M. Apoptotic death sensor: an organelle''s alter ego? Trends in pharmacological sciences 22, 306-315 (2001).
24.Jacobson, M.D., Burne, J. F., King, M. P. & Miyashita, T. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature 361, 365-369 (1993).
25.Susin, S.A., Lorenzo, H. K., Zamzami, N. & Marzo, I. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446 (1999).
26.LA, O.R., Tai, L., Lee, L. & Kruse, E. A. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461, 659-663 (2009).
27.Li, H., Zhu, H., Xu, C.J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491-501 (1998).
28.Pan, M.H. & Ho, C.T. Chemopreventive effects of natural dietary compounds on cancer development. Chemical Society reviews 37, 2558-2574 (2008).
29.Oyadomari, S., Yun, C., Fisher, E. A. & Kreglinger, N. Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload. Cell 126, 727-739 (2006).
30.Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nature cell biology 7, 766-772 (2005).
31.Wu, J. & Kaufman, R.J. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell death and differentiation 13, 374-384 (2006).
32.McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y. & Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Molecular and cellular biology 21, 1249-1259 (2001).
33.Lai, E., Teodoro, T. & Volchuk, A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 22, 193-201 (2007).
34.Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37-40 (2001).
35.Werlen, G., Hausmann, B., Naeher, D. & Palmer, E. Signaling life and death in the thymus: timing is everything. Science 299, 1859-1863 (2003).
36.Schuler, M., Bossy-Wetzel, E., Goldstein, J.C., Fitzgerald, P. & Green, D.R. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. The Journal of biological chemistry 275, 7337-7342 (2000).
37.Marchenko, N.D., Zaika, A. & Moll, U.M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. The Journal of biological chemistry 275, 16202-16212 (2000).
38.Bulavin, D.V., Saito, S., Hollander, M. C. & Sakaguchi, K. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. The EMBO journal 18, 6845-6854 (1999).
39.Sanchez-Prieto, R., Rojas, J.M., Taya, Y. & Gutkind, J.S. A role for the p38 mitogen-acitvated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer research 60, 2464-2472 (2000).
40.Kuo, J.H., Chu, Y. L., Yang, J. S. & Lin, J. P. Cantharidin induces apoptosis in human bladder cancer TSGH 8301 cells through mitochondria-dependent signal pathways. International journal of oncology 37, 1243-1250 (2010).
41.Co, N.N., Tsang, W. P., Tsang, T. Y. & Yeung, C. L. AF1q enhancement of gamma irradiation-induced apoptosis by up-regulation of BAD expression via NF-kappaB in human squamous carcinoma A431 cells. Oncology reports 24, 547-554 (2010).
42.生物資源保存及研究中心-國家衛生研究院細胞庫.【http://www.bcrc.firdi.org.tw/】. (2011).
43.Oka, M., Maeda, S., Koga, N., Kato, K. & Saito, T. A modified colorimetric MTT assay adapted for primary cultured hepatocytes: application to proliferation and cytotoxicity assays. Bioscience, biotechnology, and biochemistry 56, 1472-1473 (1992).
44.Vermes, I., Haanen, C. & Reutelingsperger, C. Flow cytometry of apoptotic cell death. Journal of immunological methods 243, 167-190 (2000).
45.Liao, W., McNutt, M.A. & Zhu, W.G. The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods 48, 46-53 (2009).
46.Ji, B.C., Hsu, W. H., Yang, J. S. & Hsia, T. C. Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. Journal of agricultural and food chemistry 57, 7596-7604 (2009).
47.Liu, G.H., Harada, T., Amemiya, T. & Itoh, K. Novel two-dimensional DNA gel electrophoresis mapping for characterizing complex bacterial communities in environmental samples. Journal of bioscience and bioengineering 107, 646-651 (2009).
48.Lin, S.Y., Lai, W. W., Chou, C. C. & Kuo, H. M. Sodium ascorbate inhibits growth via the induction of cell cycle arrest and apoptosis in human malignant melanoma A375.S2 cells. Melanoma research 16, 509-519 (2006).
49.Lu, H.F., Hsueh, S. C., Yu, F. S. & Yang, J. S. The role of Ca2+ in (-)-menthol-induced human promyelocytic leukemia HL-60 cell death. In Vivo 20, 69-75 (2006).
50.Yu, T., Robotham, J.L. & Yoon, Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proceedings of the National Academy of Sciences of the United States of America 103, 2653-2658 (2006).
51.Tan, T.W., Tsai, H. R., Lu, H. F. & Lin, H. L. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation. Anticancer research 26, 4361-4371 (2006).
52.Wu, C.C., Lin, J. P., Yang, J. S. & Chou, S. T. Capsaicin induced cell cycle arrest and apoptosis in human esophagus epidermoid carcinoma CE 81T/VGH cells through the elevation of intracellular reactive oxygen species and Ca2+ productions and caspase-3 activation. Mutation research 601, 71-82 (2006).
53.Wada, A., Fukui, K., Sawai, Y. & Imanaka, K. Pamidronate induced anti-proliferative, apoptotic, and anti-migratory effects in hepatocellular carcinoma. Journal of hepatology 44, 142-150 (2006).
54.Xue, C., Liu, W., Wu, J., Yang, X. & Xu, H. Chemoprotective effect of N-acetylcysteine (NAC) on cellular oxidative damages and apoptosis induced by nano titanium dioxide under UVA irradiation. Toxicology in vitro : an international journal published in association with BIBRA 25, 110-116 (2011).
55.Joshi, P.G., Nair, N., Begum, G. & Joshi, N. B. Melanocyte-keratinocyte interaction induces calcium signalling and melanin transfer to keratinocytes. Pigment cell research / sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society 20, 380-384 (2007).
56.Hsieh, Y.J., Wu, C.C., Chang, C.J. & Yu, J.S. Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. Journal of cellular physiology 194, 363-375 (2003).
57.Gupta, S., Hastak, K., Afaq, F., Ahmad, N. & Mukhtar, H. Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene 23, 2507-2522 (2004).
58.Pei, Y., Xing, D., Gao, X., Liu, L. & Chen, T. Real-time monitoring full length bid interacting with Bax during TNF-alpha-induced apoptosis. Apoptosis : an international journal on programmed cell death 12, 1681-1690 (2007).
59.Sorbello, V., Fuso, L., Sfiligoi, C. & Scafoglio, C. Quantitative real-time RT-PCR analysis of eight novel estrogen-regulated genes in breast cancer. The International journal of biological markers 18, 123-129 (2003).
60.Dorn, D.C., Kou, C.A., Png, K.J. & Moore, M.A. The effect of cantharidins on leukemic stem cells. International journal of cancer. Journal international du cancer 124, 2186-2199 (2009).
61.Zhang, Y., Liang, J., Sun, L., Guo, Z. & Xu, L. Inhibition of PP2A and the consequent activation of JNK/c-Jun are involved in tributyltin-induced apoptosis in human amnionic cells. Environmental toxicology (2011).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊