跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/04 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林信漢
論文名稱:風洞實驗探討氣懸性污染排放在具不同斜坡角度之三角形地形與街谷之濃度擴散特性
論文名稱(外文):Wind Tunnel Study on the Dipersion Characteristics of the Airborne Pollution on the Triangles Terrain with Different Slope Angles and Street Canyons
指導教授:蕭葆羲蕭葆羲引用關係
指導教授(外文):Bao-Shi Shiau
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:110
中文關鍵詞:風洞實驗濃度擴散氣懸性氣體三角形地形街谷
外文關鍵詞:wind tunnel experimentairborne pollutionstreet canyon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本文實驗係利用大氣環境風洞模擬都市地形之中性大氣紊流邊界層流,並量測在具不同斜坡角度之三角形地形之下風坡角處氣懸性污染排放於建築物與街谷之濃度擴散特性。由實驗量測結果分析探討,獲致以下結論:
一、本文利用環境風洞搭配合適之渦流產生器與粗糙元素之組合,模擬出本實驗所需之都市地形中性大氣紊流邊界層,其風場各項特性(包括平均風速剖面、紊流強度剖面)均符合Counihan(1975)[1]實場結果之建議值範圍內。
二、污染氣團煙流在流經建築物時,會因建築物的影響呈現濃度抬升,但抬升現象隨著下游距離增加而趨緩。
三、污染氣團之垂直向擴散尺度分析結果顯示,除了受建築物影響導致擴散尺度有變化外,另沿下游擴散尺度增加而趨緩。而水平向擴散尺度除排放源鄰近出口區段有些微變化外,其沿下游變化很小且趨緩。
四、受建築物阻擋影響導致污染氣團質心位置高度有明顯上升外,街谷後方建築物下游區質心位置高度之變化並不大且趨近平緩。

In the present thesis, wind tunnel experiments were conducted to study the dispersion characteristics of the airborne pollution on the triangle terrain with different slope angles and various distances between the terrain and street canyons.
In the experiments, the airborne pollution source was located at the toe of the downwind slope of terrain. The triangle terrain with equal upwind and downwind slope which were 15∘and 30∘. Building heights in the street were the same with terrain model height. The height denoted by H. The vortex generators and roughness elements were appropriately arranged in the test section of wind tunnel to simulate the neutral atmospheric boundary layer flows which used as the approaching flow for the experiments. The distance between the triangle terrain and front row building of street canyon were 2H and 4H. Effects of the downwind slope angle of terrain and the distance between the triangle terrain and front row building of street canyon on the pollution dispersion characteristics (such as pollution plume averaged height and dispersion parameters) were investigated in this study.

摘要 I
ABSTRACT II
目次 III
表次 V
圖次 VI
符號說明 IX
第一章 導論 1
1-1 前言 1
1-2 研究目的 1
1-3 文獻回顧 2
1-4 研究方法 2
第二章 風洞實驗模擬之理論分析 5
2-1 大氣紊流邊界層 5
2-2 中性大氣紊流邊界層之風洞試驗模擬 5
2-2-1 渦流產生器設計原理 6
2-2-2 粗糙元素設計原理 7
2-3 中性大氣紊流邊界層之風場特性 8
2-3-1 平均風速剖面 8
2-3-2 紊流強度剖面 9
2-3-3 紊流積分尺度 11
2-3-4 紊流能譜 11
2-4 風洞模擬大氣污染濃度擴散 12
2-4-1 高斯擴散理論 12
2-4-2 煙流擴散尺度 13
2-4-3 結構物對於煙流擴散之影響 14
2-5 相似性法則 15
2-6 濃度因次分析 17
第三章 實驗設計與配置 21
3-1 實驗程序 21
3-2 實驗儀器系統 21
3-2-1 大氣環境風洞 22
3-2-2 風場量測系統之儀器 23
3-2-3 濃度場量測系統之儀器 24
3-3 實驗設計 25
3-3-1 模型設計與排列配置 25
3-3-2 迫近流場模擬設計 26
3-3-3 迫近流場量測設計 27
3-3-4 濃度擴散煙流模擬設計 27
3-3-5 濃度分析之模擬設計 28
3-3-6 濃度場採樣點設計 28
第四章 實驗結果分析與討論 31
4-1 迫近流場之模擬結果 31
4-1-1 平均風速剖面 31
4-1-2 紊流強度剖面 32
4-1-3 紊流能譜 33
4-2 濃度場擴散特性之分析討論 34
4-2-1 斜坡15∘三角形地形與街谷間距2H之濃度擴散分析 34
4-2-2 斜坡30∘三角形地形與街谷間距2H之濃度擴散分析 34
4-2-3 斜坡15∘三角形地形與街谷間距4H之濃度擴散分析 35
4-2-4 斜坡30∘三角形地形與街谷間距2H之濃度擴散分析 36
4-3 擴散尺度之分析討論 36
4-4 質心位置之分析討論 37
4-5 垂直向之地表濃度及最大濃度之比較分析討論 37
4-6 建築物表面濃度之分析討論 38
4-7 不同斜坡角度地形與相同街谷間距之擴散特性分析討論 38
4-8 不同斜坡角度地形與街谷中心處之濃度剖面比較 39
第五章 結論 41
參考文獻 42
附表 44
附圖 46
誌謝 98

1. Arya, S.P.S. and Shipman, M.S., “An experimental investigation of flow and diffusion in the disturbed boundary layer over a ridge-I. Mean flow and turbulence structure”, Atmospheric Environment., Vol. 15, No. 7, pp.1173-1184, 1981.
2. Arya, S.P.S., Shipman, M.S. and Caurtney, L.Y., “An experimental investigation of flow and diffusion in the disturbed boundary layer over a ridge-II. Diffusion from a continuous point source”, Atmospheric Environment., Vol. 15, No. 7, pp.1185-1194, 1981.
3. Bietry, J., Sacre, C., and Simu, E., “Mean wind profiles and changes of terrain roughness”, Journal of Structure Division, ASCE, Vol. 104, pp. 1585-1593, 1978.
4. Businger, J. A., “Aerodynamics of vegetated surface”, Chapter 10, pp. 139-165; “Heat and Mass Transfer in the Biosphere”, Vol. 1, “Transfer Processes in the Plant Environment”, Scripton Book Co., Washington D. C., 1974.
5. Castro, I.P., “Relaxing wakes behind surface-mounted obstacles in rough wall boundary layers”, Journal of Fluid Mech., Vol. 93, pp.631-659, 1979.
6. Cermak, J.E., “Wind tunnel design for physical modeling of atmospheric boundary layer”, Journal of Engineering Mechanics, ASCE, Vol. 107, pp. 623-642, 1981.
7. Counihan, J., “Adiabatic atmospheric boundary layer: A review and analysis of data from the period 1880-1972”, Atmospheric Environment, Vol. 9, pp. 871-905, 1975.
8. Counihan, J., “Simulation of an adiabatic urban boundary layer in a wind tunnel”, Atmospheric Environment, Vol. 7, pp. 673-698, 1973.
9. Devenport, A. G., “The relationship of wind structure to wind loading”, Proceedings of Symposium on Wind Effects on Building Sand Structure, pp. 53-102, 1965.
10. Donat, J. and Schatzmann, M., “Wind tunnel experiments of single –phase heavy gas jets released under various angles into turbulent cross flows”, Journal of Wind Tunnel Engineering and Industrial aerodynamics, Vol. 83, pp. 361-370, 1999.
11. Gartshore , I. S., and DeCross, K. A., “Roughness element geometry required for wind tunnel simulations of the atmospheric wind”, Transactions of the ASME, Journal of Fluid Engineering, pp. 408-485, 1977.
12. Hajra, B., Stathopoulos, T. and Bahloul, A., “Assessment of pollutant dispersion from rooftop stack: ASHRAE, ADMS, and wind tunnel simulation” Building and Environment., Vol. 45, pp. 2768-2777, 2010.
13. Irwin, H.P.A.H., “The design of spire foe wind simulation”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.7, pp. 361-366, 1981.
14. Jensen, M., “The model law for phenomena in a natural wind”, Ingenioren, Vol. 2, No. 4, 1958.
15. Kato, M. and Hanafusa, T., “Wind tunnel simulation of atmospheric turbulent flow over a flat terrain”, Atmospheric Environment, Vol. 30, Issue 16, pp. 2853-2858, 1996.
16. Mavroidis, I., Griffiths, R. F. and Hall, D. J., “Field and wind tunnel investigation of plume dispersion around single surface obstacles” Atmospheric Environment., Vol. 37, pp. 2903-2918, 2003.
17. Rae, W.H.J. and Pope, A., “Low-speed wind tunnel testing”, John Wiley &; Sons, Inc., 1984.
18. Shiau, B.S., and Lin, Y.S., “Measurement on the dispersion of pollution in urban environment of cubic building arrays with different wind directions”, Proceedings of the International Workshop on Physical, Modeling of Flow and Dispersion Phenomenon, Orleans, France, pp. 135-141, 2007.
19. Sill, B. L., “Turbulent boundary layer profiles over uniform rough surface”, Journal of Wind Engineering And Industrial Aerodynamics, Vol.31, pp.147-163, 1988.
20. Snyder, W. H., “Similarity criteria for the application of fluid models to the study of air pollution meteorology”, Boundary Layer Meteorology, Vol. 3, pp. 113-134, 1972.
21. Townsend, A.A., “The structure of turbulent shear flow”, Cambridge University Press, p. 53, 1956.
22. Wooding, R. A., Bradley, E. F. and Marshall, J. K., “Drag due to regular arrays of roughness elements of varying geometry”, Boundary-Layer Meteorology, Vol. 5, Num. 3, pp. 285-308, 1973.
23. 蕭葆羲,“環境風洞基本特性測試及中性大氣紊流邊界層之模擬”,國立臺灣海洋大學河海工程學系環境風洞實驗室技術報告,NTOU-EWTL-1998-01,1998.
24. 王詩銘,“風洞試驗研究點源排放在不同排列之相同雙棟建築物之擴散特性”,國立台灣海洋大學河海工程學系碩士論文,2012.
25. 曾彥士,“直列式與橫列式雙排放源在不同排列密度之規則列陣結構物之濃度擴散特性風洞實驗”,國立台灣海洋大學河海工程學系碩士論文,2011

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top