1. H. Tang, H. Berger, P.E. Schmid, and G..Burri, “Photoluminescence in TiO2 anatase single crystals”, J. Appl. Phys. 87 (1993) 847.
2. H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, and F. Lévy “Electrical and optical properties of TiO2 anatase thin films”, J. Appl. Phys. 75 (1994) 2042 .
3. A. Fujishima, and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature 238 (1972) 37.
4. A. Fujishima, and K. Kohayakawa, “Hydrogen Production under Sunlight with an Electrochemical Photocell”, J. Electrochem. Soc. Jpn. 48 (1975) 1041.
5. A.L. Linsebigler, G. Lu, and J.T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev. 95 (1995) 735.
6. A. Wold, “Photocatalytic Properties of TiO2”, Chem. Mater. 5 (1993) 280.
7. M. Dusi, C.A. Muller, T. Mallat, and A. Baiker, “Novel amine-dified TiO2–SiO2 aerogel for the demanding epoxidation of substituted cyclohexenols”, Chem. Commun. 2 (1999) 197.
8. J.K. Burdett, T. Hughbands, J.M. Gordon, J.W. Richardson, and J.V. Smith, “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc. 109 (1987) 3639.
9. A. Sclafani, and J.M. Herrmann, “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions”, J. Phys. Chem. 100 (1996) 13655.
10. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemannt, “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev. 95 (1995) 69-96
11. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science 293 (2001) 269.
12. M.Scarisoreanu, R. Alexandrescu and I. Morjan, “Preparation and characterization of nitrogen-doped TiO2 nanoparticles by the laser pyrolysis of N2O - containing gas mixtures”, Appl. Surf. Sci. 255 (2009) 5373.
13. Y. Li, D.-S. Hwang, N. H. Lee, and S.-J. Kim, “Synthesis and characterization of carbon-doped titaniaas an artificial solar light sensitive photocatalyst”, Chem. Phys. Lett. 404 (2005) 25.
14. Y. J. Chen, J. M. Wu, C. S. Lin, G. Y. Jhan, M. S. Wong, S.-C. Ke, and H.H. Lo, “Role of carbon in titania as visible-light photocatalyst prepared by FFCVC method”, J. Vac. Sci. Technol. A 27 (2009) 862.
15. G. Agrios, K. A. Gary, and E. Weitz, “Narrow Band Irradiation of a Homologous Series of Chlorophenols on TiO2 Charge-Transfer Complex Formation and Reactivity”, Langmuir 20 (2004) 5911.
16. G. Li, N. M. Dimitrijevic, L. Chen, J. M. Nichols, T. Rajh, and K. A. Gray, “The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites”, J. Am. Chem. Soc. 130 (2008) 5402.
17. B.K. Vainshtein, W.M. Fridkin, and V.L. Indenbom., “Structure of Crystals”, Berlin:Macmillan India Ltd (1994).
18. Relva C. Buchanan and Taeun Park, “Materials Crystal Chemistry”, New York:Marcel Dekker, Ins. (1997).
19. H. Zhang and J.F. Banfield, “Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation”, J. Mater. Res. 15 (2000) 437.
20. 簡國明, 洪長春, 吳典熹, 王永銘, 藍怡平, “奈米二氧化鈦專利地圖及分析”, 行政院國家科學委員會 (2003).
21. Po-Wen Chou, Yu-Shiuan Wang, Chun-Chu Lin, Yi-Jia Chen, Chia-Liang Cheng, Ming-Show Wong, “Effect of carbon and oxygen on phase transformation of annealed titania films”, Surface & Coating Technology 204 (2009) 834.
22. Amy L. Linsebigler, Guangquan Lu, and John T. Yates, Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev., 95 (1995) 735.
23. H. Zhang and J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles”, Am. Mineral. 84 (1999) 528.
24. Gribb, A.A. and Banfield, J.F. “Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2”, American Mineralogist. 82 (1997) 717.
25. Y. J. Chen, G. Y. Jhan, G. L. Cai, C. S. Lin, M. S. Wong, “Identification of carbon sensitization for the visible-light photocatalytic titanium oxide”, J. Vac. Sci. Technol. A 28 (2010) 4.
26. Alexandra Navrotsky, “Energetics of Nanoparticle Oxides: Interplay Between Surface Energy and Polymorphism”, Geochem. Trans. 4 (2003) 34.
27. H. Zhang, J. F. Banfield, “Thermodynamic analysis of phase stability of nanocrystalline titania”, J. Mater. Chem. 8 (1998) 2073.
28. Rober E. Reed-Hill and Reza Abbaschian, “Physical Metallurgy Principles”, Forth Edition 479-484.
29. A. Sclafani, and J.H. Herrmann, “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions”, J.Phys. Chem. 100 (1996) 13655.
30. A. Sclafani, L.Palmisano, and M. Schiavello, “Influence of the Preparation Methods of TiO2, on the Photocatalytic Degradation of Phenol in Aqueous Dispersion”, J. Phys. Chem. 94 (1990) 829.
31. J. Fan, J. T. Yates, “Mechanism of Photooxidation of Trichloroethylene on TiO2:Detection of Intermediates by Infrared Spectroscopy”, J. Am. Chem. Soc. 118 (1996) 4686.
32. Y. Nosaka, and M.A. Fox, “Kinetics for Electron Transfer from Laser-Pulse-Irradiated Colloidal Semiconductors to Adsorbed Methylviologen. Dependence of the Quantum Yield on Incident Pulse Width”, J. Phys. Chem. 92 (1988) 1893.
33. E. Brillas, E. Mur, R. Sauleda, L. Sanchez, J. Peral, X. Domenech, J. Casado, “Aniline mineralization by AOP’s﹕anodic oxidation, photocatalysis, electro-Fenton and photoelectron-Fenton precesses”, App. Cata. B:Envir 16 (1998) 31.
34. A. Fujishima, K. Kohayakawa, and K. Honda, “Formation of Hydrogen Gas with an Electrochemical Photo-cell”, Bull. Chem. Soc. 122 (1975) 1487.
35. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible- light Photocatalysis in Nitrogen-Doped Titanium Oxide”, Science 293 (2001) 269.
36. Qi Xiao, Jiang Zhang, Chjong Xiao, Zhichun Si, Xiaoke Tan, “Solar photocatalytic degradation of methylene bleu in carbon-doped TiO2 nanoparticles suspension”, Solar Energy, 82 (2008) 706.
37. 詹國詠 “利用平面火焰法製備二氧化鈦可見光光觸媒粉末的研究” 國立東華大學, 材料科學與工程研究所, 碩士論文 (2008).38. SHI Lei, WENG Duan, “Highly active mixed-phase TiO2 photocatalytics fabricated at low temperature and the correlation between phase composition and photocatalytic activity”, 20 (2008) 1263.
39. G. Agrios, K.A. Gary, and E. Weitz, “Photocatalytic Transformation of 2,4,5-Trichlorophenol on TiO2 under Sub-Band-Gap Illumination”, Langmuir, 19 (2003) 1402.
40. G. Agrios, K.A. Gary, and E. Weitz, “Narrow Band Irradiation of a Homologous Series of Chlorophenols on TiO2 Charge-Transfer Complex Formation and ReactivityLangmuir”, 20 (2004) 5911.
41. L. Zhao, M. Han, and J. Lian, “Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition”, Thin Solid Film 516 (2008) 3394.
42. G.D. Ulrich, B.A. Milnes, and N.S. Subramanian, “Particle growth in flames. II: Experimental results for silica particles”, Combustion Science and Technology 14 (1976) 243.
43. G.D. Ulrich, and J.W Riehl, “Aggregation and growth of submicron oxide particles in flames”, Journal of Colloid and Interface Science 87 (1982) 257.
44. G.D. Ulrich, “Theory of particle formation and growth in oxide synthesis flames”, Combustion Science and Technology 4 (1971) 45.
45. G.D. Ulrich and N. S. Subramanian, “ Particle growth in flames III: Coalescence as a rate-controlling process”, Combustion Science and Technology 17 (1977) 119.
46. G.D. Ulrich, “Flame synthesis of fine particles”, Combustion and Flame 73 (1988) 187.
47. S. Koda and O. Fujiwara,“A study of inhibition effects for silane combustion by additive gases”, Combustion and Flame 73 (1988) 187.
48. B. Zhaoa, K. Uchikawa, J. R. McCormick, C.Y. Ni, J. G. Chen and H. Wang,“Ultrafine anatase TiO2 nanoparticles produced in premixed ethylene stagnation flame at 1 atm”, Proceedings of the Combustion Institute 30 (2005) 2569.
49. C.L. Yeh, S.H. Yeh and H.K. Ma,“Flame synthesis of titania particles from titanium tetraisopropoxide in premixed flames”, Powder Technology 145 (2004) 1.
50. S. Vemury and S. E. Pratsinis,“Corona-assisted flame synthesis of ultrafine titania particles”, Appl. Phys. Lett., 66 (1995) 24.
51. O. I. Arabi-Katbi, S. E. Pratsinis, P. W. Morrison, JR. and C. M. Megaridis,“Monitoring the Flame Synthesis of TiO2 Particles by in-situ FTIR Spectroscopy and Thermophoretic Sampling”, Combustion and Flame 124 (2001) 560.
52. H. K. Kammler, R. Jossen, P. W. Morrison Jr., S. E. Pratsinis and G. Beaucage,“The effect of external electric fields during flame synthesis of titania”, Powder Technology 135 (2003) 310.
53. H. K. Kammler, S. E. Pratsinis, P. W. Morrison Jr. and B. Hemmerling,“Flame Temperature Measurements during Electrically Assisted Aerosol Synthesis of Nanoparticles”, Combustion and flame, 128(2001)369-381.
54. K. Wegner, W. J. Stark, S. E. Pratsinis,“Flame-nozzle synthesis of nanoparticles with closely controlled size, morphology and crystallinity”, Materials Letters 55 (2002) 318.
55. M. R. Zachariah, D. Chin, H. G. Semerjian and J. L. Katz,“Silica particle synthesis in a counterflow diffusion flame reactor”, Combustion and Flame 78 (1989) 287.
56. S.E. Pratsinis, W. Zhu, and S. Vemury, “The role of gas mixing in flame synthesis of titania powders”, Powder Technology (1996) 87.
57. Y. Chen, N. Glumac, B.H. Kear, and G. skandan, “High rate synthesis of nanophase materials”, Nanostruct. Mater. 9 (1997) 101.
58. G. Skandan, Y-J Chen, N.Glumac, and B.H. Kear, “Synthesisof oxide nanoparticle in low pressure flames”, Nanostructured Materials 11 (1999) 149.
59. 徐美潔“利用平面火焰法製備二氧化鈦奈米粉末應用於染料敏化踏陽能電池陽極之研究”國立東華大學, 材料科學與工程研究所, 碩士論文 (2008).60. 吳家銘 “以平板火焰法合成二氧化鈦光觸媒粉末” 國立東華大學, 材料科學與工程研究所, 碩士論文 (2005).61. 汪建民, 材料分析, 中國材料科學學會 (1998).
62. EMX USER’S MANUAL, 2.1.1
63. 林彥志 “TiO2 光觸媒電極分解亞甲基藍之變因探討及動力學研究” 國立台灣大學,化學工程學研究所,碩士論文(2000).64. 鮑忠興 劉思謙, 近代穿透式電子顯微鏡實務.