跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.130) 您好!臺灣時間:2025/12/10 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林澤珊
研究生(外文):Tse-Shan Lin
論文名稱:在以火焰法製備二氧化鈦粉末中調控anatase/rutile相形成的研究及其對可見光光觸媒效應的影響
論文名稱(外文):The study of the control of the ratio of anatase/rutile phase formation in TiO2 by flat flame method and the influence on its visible-light photocatalytic efficiency
指導教授:陳怡嘉陳怡嘉引用關係
指導教授(外文):Yi-Jia Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:111
中文關鍵詞:二氧化鈦光觸媒混相火焰法可見光粉末
外文關鍵詞:TiO2photocatalyticmixed-phaseflat flame methodvisible-lightpowder
相關次數:
  • 被引用被引用:1
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用平板火焰化學氣相沉積法,成功的製備出在可見光下具有光催化效應的混相二氧化鈦粉末。首先我們發現使用不同的穩壓氣體種類會影響相結構的組成。由於氮氣的比熱比氬氣高,在粉末製程中較能蘊涵熱量維持高溫,有助於rutile的形成。而此時也認知到混相結構會讓光催化效應的提升。間隙距離的增加,會延長粉末在此區間的加熱和碰撞次數時間,使得rutile的含量提升。接著我們固定乙炔的流量比分別為600 sccm和800 sccm,並變化乙炔/氧氣流量比為1:3、1:4、1:5和1:6,調控此比例的同時也會影響相結構的組成。我們發現在低溫和缺氧的條件下,所形成的rutile是以可見光的光吸收中心為成核點,這會造成可見光吸收強度下降。而在高溫和富氧的環境下,合成的大顆粒rutile為小顆粒的anatase經碰撞後聚集形成。於TEM的實驗中,我們觀察到粉末中大部分是微小的anatase細晶粒,而rutile則呈現不規則的大顆粒狀散佈在anatase中。這種混相結構的粉末不論在可見光的吸收能力和亞甲基藍的降解,都呈現出最優異的結果。綜合實驗分析,我們認為因碳摻雜或碳所造成的缺陷形成了新的缺陷能階於混相的anatase相中,促使二氧化鈦得以吸收可見光。而混相在此的功用為延緩電子電洞對的再複合時間,藉此提升光催化效應。
In this study, we have successfully prepared the dual phase TiO2 nanopowder as visible-light photocatalyst using flat-flame chemical vapor condensation method. First, we found that the type of buffer gas has significant effect on the phase transformation. Due to higher specific heat of nitrogen than that of argon, nitrogen is more capable of maintaining particles at high temperature, and to promote the rutile formation. We also realized that the dual phase formation by partial phase transformation from anatase to rutile is critical in the enhancement of photocatalytic reaction. Second, the increase of gap distance increases the heating time and collision time for the particles, thus increases the rutile content of the particles. Third, we managed to proceed our experiment by fixing the acetylene flow rate at either 600 sccm or 800 sccm, while vary the acetylene/oxygen flow ratio for 1:3, 1:4, 1:5, and 1:6, for the flame. We found that at low temperature and oxygen-deficient condition, the rutile formation is at the expense of visible-light photonic center, while at high temperature and oxygen-rich condition, the rutile formation does not interfere with its visible-light absorption. At high temperature and oxygen-rich condition, the rutile formation is promoted by thermal energy, and does not necessarily need the nucleation agent, such as visible-light photonic center. From the TEM observation, this powder consists of majorly fine anatase particles and some scattered large rutile particles. The nanopowder produced under this condition has the highest visible-light absorption capability as well as methylene blue photocatalytic decomposition reactivity. Finally, we concluded that the defect level in anatase formed by carbon doping and related effect is responsible for the visible-light absorption, and the dual phase is responsible for the reduction of the electron-hole recombination. With both carbon doping and dual-phase formation, the visible-light photocatalytic ability of our powder is greatly enhanced.
摘要 1
Abstract 3
目錄 5
表目錄 8
圖目錄 9
第一章 序論 13
1.1前言 13
1.2 研究動機與目標 15
第二章 文獻回顧 17
2.1二氧化鈦光觸媒簡介 17
2.1.1二氧化鈦之物理性質 17
2.1.2 二氧化鈦的光催化原理 24
2.1.3二氧化鈦光觸媒文獻回顧 27
2.2火焰合成法相關探討 32
第三章 實驗系統與研究方法 39
3.1實驗規劃 39
3.2實驗前置準備 40
3.3實驗設備 41
3.3.1燃燒器系統 42
3.3.2氣體流量與燃料輸送系統 43
3.3.3前驅物裝置與產生原理 44
3.3.4體壓力控制迴路系統 44
3.3.5真空抽氣系統 45
3.3.6間隙距離定義 46
3.4實驗參數與操作流程 46
3.5分析方法 53
3.5.1 X-ray 繞射分析(XRD) 53
3.5.2紫外光 / 可見光吸收光譜分析儀 (UV-visible) 53
3.5.3電子順磁共振儀(EPR) 54
3.5.4光觸媒粉末分解亞甲基藍實驗 55
3.5.5穿透式電子顯微鏡(Transmission Electron Microscope) 58
第四章 實驗結果與討論 61
4.1在全氮和全氬氣氛下製備二氧化鈦粉末 61
4.1.1探討氮氣和氬氣的差別 66
4.2固定穩壓稀釋氣體為氮氣,改變載流氣體為氬氣 68
4.3探討促使rutile的形成方式 69
4.4 改變間隙距離從28mm至35mm 70
4.5改變乙炔(600 sccm)與氧氣火焰燃燒的比例 72
4.6 改變乙炔(800 sccm)與氧氣火焰燃燒的比例 79
4.7 TEM穿透式電子顯微鏡分析 87
4.7.1 乙炔流量600 sccm 88
4.7.2 乙炔流量800 sccm 93
第五章 結論 101
未來工作 105
參考資料 107
1. H. Tang, H. Berger, P.E. Schmid, and G..Burri, “Photoluminescence in TiO2 anatase single crystals”, J. Appl. Phys. 87 (1993) 847.
2. H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, and F. Lévy “Electrical and optical properties of TiO2 anatase thin films”, J. Appl. Phys. 75 (1994) 2042 .
3. A. Fujishima, and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature 238 (1972) 37.
4. A. Fujishima, and K. Kohayakawa, “Hydrogen Production under Sunlight with an Electrochemical Photocell”, J. Electrochem. Soc. Jpn. 48 (1975) 1041.
5. A.L. Linsebigler, G. Lu, and J.T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev. 95 (1995) 735.
6. A. Wold, “Photocatalytic Properties of TiO2”, Chem. Mater. 5 (1993) 280.
7. M. Dusi, C.A. Muller, T. Mallat, and A. Baiker, “Novel amine-dified TiO2–SiO2 aerogel for the demanding epoxidation of substituted cyclohexenols”, Chem. Commun. 2 (1999) 197.
8. J.K. Burdett, T. Hughbands, J.M. Gordon, J.W. Richardson, and J.V. Smith, “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc. 109 (1987) 3639.
9. A. Sclafani, and J.M. Herrmann, “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions”, J. Phys. Chem. 100 (1996) 13655.
10. M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemannt, “Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev. 95 (1995) 69-96
11. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides”, Science 293 (2001) 269.
12. M.Scarisoreanu, R. Alexandrescu and I. Morjan, “Preparation and characterization of nitrogen-doped TiO2 nanoparticles by the laser pyrolysis of N2O - containing gas mixtures”, Appl. Surf. Sci. 255 (2009) 5373.
13. Y. Li, D.-S. Hwang, N. H. Lee, and S.-J. Kim, “Synthesis and characterization of carbon-doped titaniaas an artificial solar light sensitive photocatalyst”, Chem. Phys. Lett. 404 (2005) 25.
14. Y. J. Chen, J. M. Wu, C. S. Lin, G. Y. Jhan, M. S. Wong, S.-C. Ke, and H.H. Lo, “Role of carbon in titania as visible-light photocatalyst prepared by FFCVC method”, J. Vac. Sci. Technol. A 27 (2009) 862.
15. G. Agrios, K. A. Gary, and E. Weitz, “Narrow Band Irradiation of a Homologous Series of Chlorophenols on TiO2 Charge-Transfer Complex Formation and Reactivity”, Langmuir 20 (2004) 5911.
16. G. Li, N. M. Dimitrijevic, L. Chen, J. M. Nichols, T. Rajh, and K. A. Gray, “The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites”, J. Am. Chem. Soc. 130 (2008) 5402.
17. B.K. Vainshtein, W.M. Fridkin, and V.L. Indenbom., “Structure of Crystals”, Berlin:Macmillan India Ltd (1994).
18. Relva C. Buchanan and Taeun Park, “Materials Crystal Chemistry”, New York:Marcel Dekker, Ins. (1997).
19. H. Zhang and J.F. Banfield, “Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation”, J. Mater. Res. 15 (2000) 437.
20. 簡國明, 洪長春, 吳典熹, 王永銘, 藍怡平, “奈米二氧化鈦專利地圖及分析”, 行政院國家科學委員會 (2003).
21. Po-Wen Chou, Yu-Shiuan Wang, Chun-Chu Lin, Yi-Jia Chen, Chia-Liang Cheng, Ming-Show Wong, “Effect of carbon and oxygen on phase transformation of annealed titania films”, Surface & Coating Technology 204 (2009) 834.
22. Amy L. Linsebigler, Guangquan Lu, and John T. Yates, Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev., 95 (1995) 735.
23. H. Zhang and J. F. Banfield, “New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles”, Am. Mineral. 84 (1999) 528.
24. Gribb, A.A. and Banfield, J.F. “Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2”, American Mineralogist. 82 (1997) 717.
25. Y. J. Chen, G. Y. Jhan, G. L. Cai, C. S. Lin, M. S. Wong, “Identification of carbon sensitization for the visible-light photocatalytic titanium oxide”, J. Vac. Sci. Technol. A 28 (2010) 4.
26. Alexandra Navrotsky, “Energetics of Nanoparticle Oxides: Interplay Between Surface Energy and Polymorphism”, Geochem. Trans. 4 (2003) 34.
27. H. Zhang, J. F. Banfield, “Thermodynamic analysis of phase stability of nanocrystalline titania”, J. Mater. Chem. 8 (1998) 2073.
28. Rober E. Reed-Hill and Reza Abbaschian, “Physical Metallurgy Principles”, Forth Edition 479-484.
29. A. Sclafani, and J.H. Herrmann, “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions”, J.Phys. Chem. 100 (1996) 13655.
30. A. Sclafani, L.Palmisano, and M. Schiavello, “Influence of the Preparation Methods of TiO2, on the Photocatalytic Degradation of Phenol in Aqueous Dispersion”, J. Phys. Chem. 94 (1990) 829.
31. J. Fan, J. T. Yates, “Mechanism of Photooxidation of Trichloroethylene on TiO2:Detection of Intermediates by Infrared Spectroscopy”, J. Am. Chem. Soc. 118 (1996) 4686.
32. Y. Nosaka, and M.A. Fox, “Kinetics for Electron Transfer from Laser-Pulse-Irradiated Colloidal Semiconductors to Adsorbed Methylviologen. Dependence of the Quantum Yield on Incident Pulse Width”, J. Phys. Chem. 92 (1988) 1893.
33. E. Brillas, E. Mur, R. Sauleda, L. Sanchez, J. Peral, X. Domenech, J. Casado, “Aniline mineralization by AOP’s﹕anodic oxidation, photocatalysis, electro-Fenton and photoelectron-Fenton precesses”, App. Cata. B:Envir 16 (1998) 31.
34. A. Fujishima, K. Kohayakawa, and K. Honda, “Formation of Hydrogen Gas with an Electrochemical Photo-cell”, Bull. Chem. Soc. 122 (1975) 1487.
35. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible- light Photocatalysis in Nitrogen-Doped Titanium Oxide”, Science 293 (2001) 269.
36. Qi Xiao, Jiang Zhang, Chjong Xiao, Zhichun Si, Xiaoke Tan, “Solar photocatalytic degradation of methylene bleu in carbon-doped TiO2 nanoparticles suspension”, Solar Energy, 82 (2008) 706.
37. 詹國詠 “利用平面火焰法製備二氧化鈦可見光光觸媒粉末的研究” 國立東華大學, 材料科學與工程研究所, 碩士論文 (2008).
38. SHI Lei, WENG Duan, “Highly active mixed-phase TiO2 photocatalytics fabricated at low temperature and the correlation between phase composition and photocatalytic activity”, 20 (2008) 1263.
39. G. Agrios, K.A. Gary, and E. Weitz, “Photocatalytic Transformation of 2,4,5-Trichlorophenol on TiO2 under Sub-Band-Gap Illumination”, Langmuir, 19 (2003) 1402.
40. G. Agrios, K.A. Gary, and E. Weitz, “Narrow Band Irradiation of a Homologous Series of Chlorophenols on TiO2 Charge-Transfer Complex Formation and ReactivityLangmuir”, 20 (2004) 5911.
41. L. Zhao, M. Han, and J. Lian, “Photocatalytic activity of TiO2 films with mixed anatase and rutile structures prepared by pulsed laser deposition”, Thin Solid Film 516 (2008) 3394.
42. G.D. Ulrich, B.A. Milnes, and N.S. Subramanian, “Particle growth in flames. II: Experimental results for silica particles”, Combustion Science and Technology 14 (1976) 243.

43. G.D. Ulrich, and J.W Riehl, “Aggregation and growth of submicron oxide particles in flames”, Journal of Colloid and Interface Science 87 (1982) 257.
44. G.D. Ulrich, “Theory of particle formation and growth in oxide synthesis flames”, Combustion Science and Technology 4 (1971) 45.
45. G.D. Ulrich and N. S. Subramanian, “ Particle growth in flames III: Coalescence as a rate-controlling process”, Combustion Science and Technology 17 (1977) 119.
46. G.D. Ulrich, “Flame synthesis of fine particles”, Combustion and Flame 73 (1988) 187.
47. S. Koda and O. Fujiwara,“A study of inhibition effects for silane combustion by additive gases”, Combustion and Flame 73 (1988) 187.
48. B. Zhaoa, K. Uchikawa, J. R. McCormick, C.Y. Ni, J. G. Chen and H. Wang,“Ultrafine anatase TiO2 nanoparticles produced in premixed ethylene stagnation flame at 1 atm”, Proceedings of the Combustion Institute 30 (2005) 2569.
49. C.L. Yeh, S.H. Yeh and H.K. Ma,“Flame synthesis of titania particles from titanium tetraisopropoxide in premixed flames”, Powder Technology 145 (2004) 1.
50. S. Vemury and S. E. Pratsinis,“Corona-assisted flame synthesis of ultrafine titania particles”, Appl. Phys. Lett., 66 (1995) 24.
51. O. I. Arabi-Katbi, S. E. Pratsinis, P. W. Morrison, JR. and C. M. Megaridis,“Monitoring the Flame Synthesis of TiO2 Particles by in-situ FTIR Spectroscopy and Thermophoretic Sampling”, Combustion and Flame 124 (2001) 560.
52. H. K. Kammler, R. Jossen, P. W. Morrison Jr., S. E. Pratsinis and G. Beaucage,“The effect of external electric fields during flame synthesis of titania”, Powder Technology 135 (2003) 310.
53. H. K. Kammler, S. E. Pratsinis, P. W. Morrison Jr. and B. Hemmerling,“Flame Temperature Measurements during Electrically Assisted Aerosol Synthesis of Nanoparticles”, Combustion and flame, 128(2001)369-381.
54. K. Wegner, W. J. Stark, S. E. Pratsinis,“Flame-nozzle synthesis of nanoparticles with closely controlled size, morphology and crystallinity”, Materials Letters 55 (2002) 318.
55. M. R. Zachariah, D. Chin, H. G. Semerjian and J. L. Katz,“Silica particle synthesis in a counterflow diffusion flame reactor”, Combustion and Flame 78 (1989) 287.
56. S.E. Pratsinis, W. Zhu, and S. Vemury, “The role of gas mixing in flame synthesis of titania powders”, Powder Technology (1996) 87.
57. Y. Chen, N. Glumac, B.H. Kear, and G. skandan, “High rate synthesis of nanophase materials”, Nanostruct. Mater. 9 (1997) 101.

58. G. Skandan, Y-J Chen, N.Glumac, and B.H. Kear, “Synthesisof oxide nanoparticle in low pressure flames”, Nanostructured Materials 11 (1999) 149.
59. 徐美潔“利用平面火焰法製備二氧化鈦奈米粉末應用於染料敏化踏陽能電池陽極之研究”國立東華大學, 材料科學與工程研究所, 碩士論文 (2008).
60. 吳家銘 “以平板火焰法合成二氧化鈦光觸媒粉末” 國立東華大學, 材料科學與工程研究所, 碩士論文 (2005).
61. 汪建民, 材料分析, 中國材料科學學會 (1998).
62. EMX USER’S MANUAL, 2.1.1
63. 林彥志 “TiO2 光觸媒電極分解亞甲基藍之變因探討及動力學研究” 國立台灣大學,化學工程學研究所,碩士論文(2000).
64. 鮑忠興 劉思謙, 近代穿透式電子顯微鏡實務.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊