1.Buckwalter, J.A., Activity vs. rest in the treatment of bone, soft tissue and joint injuries. Iowa Orthop J, 1995. 15: p. 29-42.
2.Park, K.M., et al., Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater, 2009. 5(6): p. 1956-65.
3.Kolker, S.J., et al., Acid-sensing ion channel 3 expressed in type B synoviocytes and chondrocytes modulates hyaluronan expression and release. Ann Rheum Dis, 2010. 69(5): p. 903-909.
4.Li, F., et al., In-situ forming biodegradable glycol chitosan-based hydrogels: Synthesis, characterization, and chondrocyte culture. Materials Science and Engineering: C, 2012. 32(7): p. 2017-2025.
5.Mano, J.F., et al., Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface, 2007. 4(17): p. 999-1030.
6.葛宇淪,應用於骨組織工程之多孔形HA-PEEK生物複合材料之研究,南台科技大學,化學工程與材枓工程系碩士論文,2008.7.de la Fuente, M., B. Seijo, and M.J. Alonso, Novel hyaluronan-based nanocarriers for transmucosal delivery of macromolecules. Macromol Biosci, 2008. 8(5): p. 441-50.
8.Duceppe, N. and M. Tabrizian, Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials, 2009. 30(13): p. 2625-31.
9.Tang, Y., et al., An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym, 2012. 88(1): p. 46-53.
10.Li, F., et al., In-situ forming biodegradable glycol chitosan-based hydrogels: Synthesis, characterization, and chondrocyte culture. Materials Science &; Engineering C-Materials for Biological Applications, 2012. 32(7): p. 2017-2025.
11.Nazar, H., et al., Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm, 2011. 77(2): p. 225-32.
12.Lietman, S.A., et al., Stimulation of proteoglycan synthesis in explants of porcine articular cartilage by recombinant osteogenic protein-1 (bone morphogenetic protein-7). J Bone Joint Surg Am, 1997. 79(8): p. 1132-7.
13.Young, I.S. and J.V. Woodside, Antioxidants in health and disease. J Clin Pathol, 2001. 54(3): p. 176-86.
14.Leung, L.K., et al., Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr, 2001. 131(9): p. 2248-51.
15.Zern, T.L. and M.L. Fernandez, Cardioprotective effects of dietary polyphenols. J Nutr, 2005. 135(10): p. 2291-4.
16.Mertens-Talcott, S.U., et al., Ellagic acid potentiates the effect of quercetin on p21waf1/cip1, p53, and MAP-kinases without affecting intracellular generation of reactive oxygen species in vitro. J Nutr, 2005. 135(3): p. 609-14.
17.Huang, G., et al., Controlled drug release from hydrogel nanoparticle networks. J Control Release, 2004. 94(2-3): p. 303-11.
18.Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-51.
19.Gutowska, A., B. Jeong, and M. Jasionowski, Injectable gels for tissue engineering. Anat Rec, 2001. 263(4): p. 342-9.
20.Ruel-Gariepy, E. and J.C. Leroux, In situ-forming hydrogels--review of temperature-sensitive systems. Eur J Pharm Biopharm, 2004. 58(2): p. 409-26.
21.Chenite, A., et al., Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 2000. 21(21): p. 2155-61.
22.Petrovic, S.C., W. Zhang, and M. Ciszkowska, Preparation and characterization of thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels: studies with electroactive probes. Anal Chem, 2000. 72(15): p. 3449-54.
23.陳威,利用電漿處理及UV光接枝聚合固定聚丙烯酸藥物釋放水膠並固定幾丁聚醣褐藻酸於316L不鏽鋼表面,大同大學,材料科學與工程學系碩士論文,2010.24.張永承,聚己內酯混摻幾丁聚醣微粒對複合膜物性影響,東海大學,化學工程與材料工程學系碩士論文,2010.25.Shu, S., et al., Polyelectrolyte nanoparticles based on water-soluble chitosan-poly(L-aspartic acid)-polyethylene glycol for controlled protein release. Carbohydr Res, 2009. 344(10): p. 1197-204.
26.Weng, L., et al., Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran. Biomaterials, 2008. 29(29): p. 3905-13.
27.Lin, Y.H., et al., Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials, 2005. 26(14): p. 2105-13.
28.Chen, S.C., et al., A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Journal of Controlled Release, 2004. 96(2): p. 285-300.
29.黄强,N, O羧甲基壳聚糖的制备及其理化特性研究,华南理工大学轻工与食品学院,2009年第35卷第7期(总第259期).
30.林倩如,氫氧基磷灰石-膠原蛋白-透明質酸複合微粒對於間葉幹細胞骨分化之影響,國立成功大學,生物科技研究所碩士班,2009.31.Huang, G.S., et al., Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials, 2011. 32(29): p. 6929-45.
32.Sharma, G., et al., Biodegradable in situ gelling system for subcutaneous administration of ellagic acid and ellagic acid loaded nanoparticles: evaluation of their antioxidant potential against cyclosporine induced nephrotoxicity in rats. J Control Release, 2007. 118(1): p. 27-37.
33.Scheibmeir, H.D., et al., A review of free radicals and antioxidants for critical care nurses. Intensive Crit Care Nurs, 2005. 21(1): p. 24-8.
34.Hayes ER. N,O-carboxymethyl chitosan and preparative method,US4619995A,1986.
35.Lin, Y.H., et al., Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials, 2005. 26(14): p. 2105-2113.
36.Su, W.Y., Y.C. Chen, and F.H. Lin, Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration. Acta Biomater, 2010. 6(8): p. 3044-3055.