|
1. Y.T. Chen, Y.H. Cheng, C.K. Law and J. Tsay, $L^1$ convergence of the reconstruction formula for the potential function, Proc. Amer. Math. Soc. 130 (2002), no. 8, 2319-2324. 2. Y.H. Cheng and C.K. Law, On the quasinodal map for the Sturm-Liouville problem, to appear in Proc. Royal Soc. Edinburgh series A. 3. H. Coskun and B. J. Harris, Estimates for the periodic and semi-periodic eigenvalues of the Hill''s equation, Proc. Royal Soc. Edinburgh, 130A (2000), 991-998. 4. C.K. Law, C.L. Shen and C.F. Yang, The inverse nodal problem on the smoothness of the potential function, Inverse Problems 15 (1999), 253-263; Errata, 17 (2001), 361-364. 5. W. Magnus and S. Winkler, Hill''s equation, Dover, New York. (1979) 6. C.K. Law and J. Tsay, On the well-posedness of the inverse nodal problem, Inverse Problems 17 (2001), 1493-1512. 7. H. Coskun and B. J. Harris, Estimates for the periodic and semi-periodic eigenvalues of the Hill''s equation, Proceedings of the Royal Society of Edinburgh, 130A (2000), 991-998. 8. J.R. McLaughlin, Inverse spectral theory using nodal data - a uniqueness result, J. Diff. Eqns. 73 (1988), 354-362. 9. X.F. Yang, A solution of the inverse nodal problem, Inverse Problems 13 (1997), 203-213.
|