跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/13 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭謹陞
研究生(外文):Chin-Sheng Kuo
論文名稱:生物處理系統之溶解性胞外聚合物親疏水特性對薄膜積垢之影響
論文名稱(外文):Effect of Soluble Microbial Products Hydrophobicity on Membrane Fouling
指導教授:林正芳林正芳引用關係
指導教授(外文):Cheng-Fang Lin
口試委員:李公哲康佩群林郁真
口試日期:2011-07-01
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:102
中文關鍵詞:污泥齡固定式生物系統活性污泥系統薄膜積垢DAX-8樹脂溶解性胞外聚合物親疏水性
外文關鍵詞:SRTFCBSASPMembrane foulingDAX-8 resinSMPHydrophobicity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:293
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以不同污泥齡之生物處理系統:固定式生物系統和活性污泥系統之出流水進行不同孔徑大小的薄膜過濾實驗,觀察薄膜滲流通量衰減情形,並以DAX-8樹脂分離經薄膜過濾前後之水樣,分離出親疏水性群組,再分析各群組的TOC、碳水化合物、蛋白質等成份,以探討溶解性胞外聚合物之親疏水特性對於薄膜生物積垢的影響。
以30 kDa、100 kDa不同孔徑大小之薄膜進行生物出流水的過濾實驗,在有懸浮微粒的情況下,積垢情形較去除懸浮顆粒的嚴重,過濾至通量較穩定後,有去除懸浮顆粒與未去除懸浮顆粒的積垢趨勢相似,因此溶解性物質為影響薄膜積垢的重要因素。以0.1 μm玻璃纖維濾紙去除懸浮顆粒的影響後,針對溶解性物質探討對薄膜積垢的影響,以不同生物系統出流水分別進行不同孔徑的薄膜過濾實驗,因固定式生物系統出流水的SMP較活性污泥系統高,故固定式生物系統出流水造成的薄膜積垢情形較活性污泥系統出流水嚴重,薄膜積垢的程度隨SMP越高也越嚴重。
不論是何種生物系統出流水進行薄膜過濾,薄膜孔徑越大所能承載的流通量也越大,因此造成的薄膜積垢情形也越嚴重。分析兩生物系統經薄膜過濾前後的親疏水性群組的TOC、碳水化合物、蛋白質結果,固定式生物系統和活性污泥系統出流水中,親水性群組所佔的比例較多,疏水性群組較少,親水性物質被薄膜去除較疏水性物質多,親水性物質殘留在薄膜上較多,故親水性物質為影響薄膜積垢的主要因素。


Biological treatment systems with different sludge retention time (SRT), fixed carrier biological system (FCBS) and activated sludge process (ASP) were studied. Membrane permeate flux fluctuation was constantly monitored. The effect of soluble microbial products (SMP) hydrophobicity on membrane fouling was investigated with the use of DAX-8 resin to isolate hydrophilic and hydrophobic compounds in water samples, with total organic compound (TOC), carbohydrate and protein were taken as quantitative parameters for hydrophobicity analyze.
Two different membrane pore sizes (30 kDa and 100 kDa) were used in membrane operation. Fiber filter with pore size of 0.1 μm was applied as pretreatment in order to eliminate the impact of suspended solids in water samples on membrane fouling. Effluents from different biological treatment systems (FCBS and ASP) were run through membrane process and it was observed that FCBS effluents contained higher SMP concentrations and caused more significant membrane fouling than effluents from ASP system. The result also suggested that membrane fouling increase with SMP concentrations.
Greater permeate flux decline was observed in membrane process with larger pore size for both FCBS and ASP system. Hydrophobicity analysis indicated hydrophilic contents are the major components of SMP, and the result also indicated that membrane retained more hydrophilic contents than hydrophobic contents. In conclusion, it can be suggested membrane fouling was mainly affected by hydrophilic substances.


口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
總目錄 v
圖目錄 viii
表目錄 ix
第一章 前言 1
1.1研究緣起 1
1.2研究目的 3
1.3研究內容 4
第二章 文獻回顧 5
2.1 薄膜處理技術 5
2.1.1 薄膜種類與材質 5
2.1.2 薄膜形式與處理機制 6
2.2 薄膜積垢 8
2.2.1 薄膜積垢分類 8
2.2.2 薄膜積垢機制 9
2.2.3 影響薄膜積垢之因素 11
2.3 生物薄膜積垢 14
2.3.1 生物處理系統 15
2.3.2 污泥齡 17
2.3.3 胞外聚合物 18
2.3.4 親疏水特性 21
2.4 分離親疏水性族群之樹脂 22
第三章 實驗方法與材料 23
3.1 實驗內容與項目 23
3.1.1 實驗內容與架構 23
3.1.2 實驗項目 23
3.2 實驗流程 24
3.3 實驗設備與材料 26
3.3.1 生物處理系統 26
3.3.2 自動化薄膜程序控制 29
3.3.3 DAX-8分離設備與藥品 34
3.4 實驗步驟與方法 35
3.4.1 薄膜過濾實驗 35
3.4.2 DAX-8疏水性樹脂操作實驗 35
3.4.3 蛋白質、碳水化合物分析方法 36
3.5 分析儀器-總有機碳(TOC)分析儀 38
第四章 結果與討論 39
4.1 生物處理系統水質概況 39
4.2 DAX-8樹脂分離試驗 41
4.3 生物處理系統出流水對薄膜積垢之影響 47
4.3.1 溶解性物質對薄膜積垢之影響 47
4.3.2 不同系統溶解性物質對薄膜積垢之影響 50
4.3.3 溶解性物質對不同孔徑的薄膜積垢情形 52
4.4 生物處理系統出流水親疏水性對薄膜積垢之影響 54
第五章 結論與建議 58
5.1 結論 58
5.2 建議 60
參考文獻 61
附錄 69



Adamson, A.W. and Gast A.P. (1997). Physical Chemistry of surfaces.
Wiley-Interscience, New York.

Ahmed, Z., Cho, J., Lim, B.R., Song, K.G. and Anh, K.H. (2007). Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor. Journal of Membrane Science, 287(2), 211-218.

Adav, S., Lee, D.J. and Tay, J.H. (2008). Extracellular polymeric substances and structural stability of aerobic granule. Water Research, 42(6-7), 1644-1659.

Azeredo, J., Lazarvo, V. and Oliveira, R. (1999). Methods to extract the exopolymeric matrix from biofilms: a comparative study. Water Science Technology, 39(7), 243-250.

Al-Halbouni, D., Dott, W. and Hollender, J. (2009). Occurrence and composition of extracellular lipids and polysaccharides in a full-scale membrane bioreactor. Water Research, 43, 97-106.

Aiken, G.R., Mcknight, D.M., Thorn, K.A. and Thurman, E.M. (1992). Isolation Of Hydrophilic Organic-Acids From Water Using Nonionic Macroporous Resins. Organic Geochemistry, 18(4), 567-573.

Bowen, W.R., Calvo, J.I. and Hernandez, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 101(1-2), 153-165.

Brookes, A., Judd, S., Reid, E., Germain, E., Smith, S., Alvarez-Vazquez, H., Le-Clech, P., Stephenson, T., Turra, E. and Jefferson, B. (2003). Biomass characterisation in membrane bioreactors. IMSTEC, Sdyney, Australia.

Bae, T.H. and Tak, T.M. (2005). Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor. Journal of Membrane Science, 264, 151-160.

Cho, J., Amy, G. and Pellegrino, J. (1999). Membrane filtration of natural organic matter: Initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes. Water Research, 33(11), 2517-2526.

Cho, J., Amy, G., Pellegrino, J. (2000). Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane. Journal of Membrane Science, 164(1-2), 89-110.

Costa, A.R. and Maria, N.D.P. (2005). Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions. Journal of Membrane Science, 255(1-2), 49-56.

Combe, C., Molis, E., Lucas, P., Riley, R. and Clark, M.M. (1999). The effect of CA membrane properties on adsorptive fouling by humic acid. Journal of Membrane Science, 154, 73-87.

Chang, I.S. and Kim, S.N. (2005). Wastewater treatment using membrane filtration-effect of biosolids concentration on cake resistance. Process Biochemistry, 40, 1307-1314.

Chae, S.R., Ahn, Y.T., Kang, S.T. and Shin, H.S. (2006). Mitigated membrane fouling in a vertical submerged membrane bioreactor (VSMBR). Journal of Membrane Science, 280, 572-581.

Cho, J., Song, K.G., Lee, S.H. and Anh, K.H. (2005). Sequencing anoxic/anaerobic membrane bioreactor (SAM) pilot plant for advanced wastewater treatment. Desalination, 178, 219-225.

Costerton, J.W., Irvin, R.T. and Cheng, K.J. (1981). The bacterial glycocalyx in nature and disease. Annual Review of Microbiology, 35, 29-324.

Comte, S., Guibaud, G. and Baudu, M. (2006). Extraction of extracellular polymers (EPS) from activated sludge. Part I. Comparison of eight EPS extraction methods. Enzyme and Microbiol Technology, 38, 237-245.

Comte, S., Guibaud, G. and Baudu, M. (2007). Effect of extraction method on EPS from activated sludge: An HPSEC investigation. Journal of Hazardous Material, 140(1-2), 129-137.

Drews, A., Vocks, M., Bracklow, U., Iversen, V. and Kraume, M. (2008). Does fouling in MBR depend on SMP. Desalination, 231, 141-149.

Dignac, M.F., Urbain, V., Rybacki, D., Bruchet, A., Snidaro, D. and Scribe, P. (1998). Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Science and Technology, 38(8-9), 45-53.

Flemming, H.C., Schaule, G., Griebe, T., Schmitt, J. and Tamachkiarowa, A. (1997). Biofouling-the Achilles heel of membrane processes. Desalination, 113, 215-225.

Fan, L., Harris, J.L., Roddick, F.A. and Booker, N.A. (2001). Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Research, 35(18), 4455-4463.

George, T., Jeannie, D., Keith, B., John, M., Paul, G. and Michael, T. (1998). Ultrafiltration as an advanced tertiary treatment process for municipal wastewater. Desalination, 119, 315-322.

Gao, M., Yang, M., Li, H., Wang, Y. and Pan, F. (2004). Nitrification and sludge characteristics in a submerged membrane bioreactor on synthetic inorganic wastewater. Desalination, 170(2), 177-185.

Grelier, P., Rosenberger, S. and Tazi-Pain, A. (2006). Influence of sludge retention time on membrane bioreactor hydraulic performance. Desalination, 192(1-3), 10-17.

Guibaud, G., Bordas, F., Saaid, A., D’abzac, P. and Hellebusch, E.V. (2008). Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloids and Surfaces B: Biointerfaces, 63(1), 48-54.

Garnier, C., Gorner, T., Lartiges, B.S., Abdelouhab, S. and Donato, P. (2005). Characterization of activated sludge exopolymer from various origins: A combined size-exclusion chromatography and infrared microscopy study. Water Research, 39, 3044-3054.

Geng, Z. and Hall, E.R. (2007). A comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorus removal processes. Water Research, 41, 4329-4338.
Hong, S. and Elimelech, M. (1997). Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. Journal of Membrane Science, 132(2), 159-181.

Her, N., Amy, G. and Jarusutthirak, C. (2000). Seasonal variations of nanofiltration (NF) foulants: identification and control. Desalination, 132, 143-160.

Han, S.S., Bae, T.H., Jang, G.G. and Tak, T.M. (2005). Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Process Biochemistry, 40(7), 2393-2400.

Jeong, T.Y., Cha, G.C., Yoo, I.K. and Kim, D.J. (2007). Characteristics of bio-fouling in a submerged MBR. Desalination, 207, 107-113.

Kilduff, J.E., Mattaraj, S. and Belfort, G. (2004). Flux decline during nanofiltration of naturally-occurring dissolved organic matter: effects of osmotic pressure, membrane permeability and cake formation. Journal of Membrane Science, 239(1), 39-53.

Kimura, K., Hane, Y., Watanabe, Y., Amy, G. and Ohkuma, N. (2004). Irreversible membrane fouling during ultrafiltration of surface water. Water Research, 38, 3431-3441.

Kulovaara, M., Metsamuuronen, S. and Nystrom, M. (1999). Effects of aquatic humic substances on a hydrophobic untrafiltration membrane. Chemosphere, 38(15), 3485-3496.

Kennedy, M.D., Chun, H.K., Yangali, V.A.Q., Heijman, B.G.J. and Schippers, J.C. (2005). Natural organic matter (NOM) fouling of ultrafiltration membranes: fractionation of NOM in surface water and characterisation by LC-OCD. Desalination, 178, 73-83.

Li, Q. and Elimelech, M. (2004). Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms. Environmental Science & Technology, 38(17), 4683-4693.

Lin, C.F., Angela, Lin, Y.C., Panchangam, S.C. and Tsai, C.Y. (2009). Effects of mass retention of dissolved organic matter and membrane pore size on membrane fouling and flux decline. Water Research, 43, 389-394.
Lin, C.F., Huang, Y.J. and Hao, O.J. (1999). Ultrafiltration processed for removing humic substances: effect of molecular weight fractions and PAC treatment. Water Research, 33(5), 252-1364.

Lin, C.F., Lin, T.Y. and Hao, O.J. (2000). Effects of humic substance characteristics on UF performance. Water Research, 34(4), 1097-1106.

Lee, N., Amya, G., Croue, J.P. and Buissonc, H. (2004). Identification and understanding of fouling in low-pressure membrane (MF/UF) filtration by natural organic matter (NOM). Water Research, 38(20), 4511-4523.

Lee, W., Kang, S. and Shin, H. (2003). Sludge Characteristics and their contribution to microfiltration in submerged membrane bioreactors. Journal of Membrane Science, 216(1-2), 217 – 227.

Liang, S., Liu, C. and Song, L. (2007). Soluble microbial products in membrane bioreactor operation: behaviors, characteristics, and fouling potential. Water Research, 41, 95-101.

Le-Clech, P., Chen, V. and Fane, T.A.G. (2006). Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane Science, 284(1-2), 17-53.

Lyko, S., Wintgens, T., Al-Halbouni, D., Baumgarten, S., Tacke, D., Drensla, K., Janot, A., Dott, W., Pinnekamp, J. and Melin, T. (2008). Long-term monitoring of a full-scale municipal membrane bioreactor-Characterization of foulants and operational performance. Journal of Membrane Science, 317(1-2), 78-87.

Li, T., Bai, R. and Liu, J. (2008). Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm. Journal of Biotechnology, 135(1), 52-57.

Liao, B.Q., Allen, D.G., Droppo, I.G., Leppard, G.G. and Liss, S.N. (2001). Surface properties of activated sludge and their role in bioflocculation and settleability. Water Research, 35(2), 339–350.

Laspidou, C.S. and Rittmann, B.E. (2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 36, 2711-2720.
Liu, H. and Fang, Herbert, H.P. (2002). Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 95(3), 246-256.

Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.S. and Yang, F. (2009). Recent advances in membrane bioreactors(MBRs): membrane fouling and membrane material. Water Research, 43, 1489-1512.

Nakatsuka, S., Nakate, I. and Miyano, T. (1996). Drinking water treatment by using ultrafiltration hollow fiber membranes. Desalination, 106(1-3), 55-61.

Nilson, J.A. and DiGiano, F.A. (1996). Influence of NOM composition on nanofiltration. Journal of the American Water Works Association, 88(2), 53-66.

Ng, K.K., Lin, C.F., Lateef, S.K., Panchangam, S.C., Hong, P.K.A. and Yang, P.Y. (2010). The effect of soluble microbial products on membrane fouling in a fixed carrier biological system. Separation and Purification Technology, 72, 98-104.

Ng, H.Y. and Hermanowicz, S.W. (2005). Membrane bioreactor operation at short solids retention times performance and biomass characteristics. Water Research, 39(6), 981-992.

Nielsen, P.H., Jahn, A. and Palmgren, R. (1997). Conceptual model for production and composition of exopolymers in biofilms. Water Science and Technology, 36(1), 11–19.

Nagaoka, H. and Nemoto, H. (2005). Influence of extracellular polymeric subtances on nitrogen removal in an intermittently-aerated membrane bioreactor. Water Science and Technology, 51, 219-225.

Park, N., Yoon, Y., Moon, S.H. and Cho, J. (2004). Evaluation of the performance of tight-UF membranes with respect to NOM removal using effective MWCO, molecular weight, and apparent diffusivity of NOM. Desalination, 164, 53-62.

Psoch, C. and Schiewer, S. (2006). Resistance analysis for enhanced wastewater membrane filtration. Journal of Membrane Science, 280, 284-297.

Pan, J.R., Su, Y. and Huang, C. (2010). Characteristics of soluble microbial products in membrane bioreactor and its effect on membrane fouling. Desalination, 250, 778-780.

Pollice, A., Brookes, A., Jefferson, B. and Judd, S. (2005). Sub-critical flux fouling in membrane bioreactors-a review of recent literature. Desalination, 174, 221-230.

Reid, E., Liu, X. and Judd, S.J. (2006). Effect of high salinity on activated sludge characteristics and membrane permeability in an immersed membrane bioreactor. Journal of Membrane Science, 283(1-2), 164-171.

Rosenberger, S. and Kraume, M. (2002). Filterability of activated sludge in membrane bioreactor. Desalination, 151(2), 195–200.

Teixeira, M.R., Rosa, M.J. and Nystrom, M. (2005). The role of membrane charge on nanofiltration performance. Journal of Membrane Science, 265, 160-166.

Trussell, R.S., Merlo, R.P., Hermonowicz, S.W. and Jenkins, D. (2006). The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater. Water Research, 40(14), 2675-2683.

Thurman, E.M. and Malcolm, R.L. (1981). Preparative isolation of aquatic humic
substances. Environmental Science & Technology, 15(4), 463-466.

Yuan, W. and Zydney, A.L. (1999). Humic acid fouling during microfiltration.
Journal of Membrane Science, 157(1), 1-12.

Yuan, W. and Zydney, A.L. (1999). Effects of solution environment on humic acid
fouling during microfiltration. Desalination, 122(1), 63-76.

Yuan, W. and Zydney, A.L. (2000). Humic acid fouling during ultrafiltration.
Environmental Science & Technology, 34(23), 5043-5050.

Yang, P.Y., Su, R. and Kim, S.J. (2003). EMMC process for combined removal of organics, nitrogen and odor producing substance. Journal of Environmental Management, 69, 381-389.

Yang, P.Y., Chen, H.J. and Kim, S.J. (2003). Integrating entrapped mixed microbial cell (EMMC) process for biological removal of carbon and nitrogen from dilute swine wastewater. Bioresource Technology, 86, 245-252.

Yijit, N.O., Harman, I., Civelekoglu, G., Koseoglu, H., Cicek, N. and Kitis, M. (2008). Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions. Desalination, 231(1-3), 124-132.

Zhang, J., Chua, H.C., Zhou, J. and Fane, A.G. (2006). Factors affecting the membrane performance in submerged membrane bioreactors. Journal of Membrane Science, 284, 54-66.

Zhang, B., Sun, B., Min, J., Gong, T. and Gao, Z. (2008). Extraction and analysis of extracellular polymeric substances in membrane fouling in submerged MBR. Desalination, 227(1-3), 286-294.

Zhang, G., Ji, S. and Gao, X. (2008). Adsorptive fouling of extracellular polymeric substances with polymeric ultrafiltration membranes. Journal of Membrane Science, 309(1-2), 28-35.

Zhang, X.Q. and Bishop, P.L. (2001). Spatial distribution of extracellular polymeric substances in biofilms. Journal of Environmental Engineering ASCE, 127(9), 850–856.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊