|
[1] H. Iwai, "CMOS technology — year 2010 and beyond," IEEE J. Solid-State Circuits, vol. 34, pp. 357-366, Mar. 1999. [2] S. D. Naffziger, and G. Hammond, “The implementation of the next generation 64b Itanium™ microprocessor,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, Feb. 2002, pp. 344-345, 472. [3] M. Anders, S. K, Mathew, B. Bloechel, R. Krishnamurthy, K. Soumyanath, and S. Borkar, “A 6.5 GHz 130 nm single-ended dynamic ALU and instruction scheduler loop,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, Feb. 2002, pp. 410-412, 477. [4] N. H. E. Weste and K. Eshraghian, “Principle of CMOS VLSI design: a system perspective,” Second Edition, Addison-Wesley, 1993 [5] Transmeta Corp., “LongRun™ power management: dynamic power management for Crusoe™ processors,” http://www.transmeta.com. [6] M. Smith, “Measuring temperatures on computer chips with speed and accuracy,” Analog Dialogue, vol 33, no. 4, April 1999. [7] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and design of analog integrated circuits, Forth Edition, John Wiely & Sons, 2001. [8] Analog Devices Inc., “AD592 low cost, precision IC temperature transducer,” http://www.analog.com. [9] G. C. M. Meijer and A. W. Herwaarden ed., Thermal sensors, Institute of Physics Publishing, 1994. [10] National Semiconductor Corp., “LM35 precision centigrade temperature sensors,” http://www.national.com. [11] Maxim Integrated Products, “MAX6654 1 °C accurate remote/local temperature sensor with SMBus serial interface,” http://www.maxim-ic.com. [12] G. C. M. Meijer, “Thermal sensors based on transistors,” Sensors and Actuators, vol. 10, pp. 103-125, 1986. [13] G. A. Rincon-Mora, “Exact curvature-correcting method for bandgap circuits,” United States Patent no. 6157245, Dec. 5, 2000. [14] C. H. Lin and K. Bult, “A 10-b, 500-Msamples/s CMOS DAC in 0.6 mm2,” IEEE J. Solid-State Circuits, vol. 33, pp. 1948-1958, Dec. 1998. [15] National Semiconductor Corp., “LM75 Digital temperature sensor and thermal watchdog with wwo-wire interface,” http://www.national.com. [16] Intel Corp., “Intel® Pentium® 4 processor with 512-KB L2 cache on 0.13 m process at 2 GHz, 2.20 GHz, 2.26 GHz, 2.40 GHz, and 2.53 GHz datasheet,” http://www.intel.com. [17] Advanced Micro Devices, “AMD Athlon™ XP processor model 6 data sheet,” Inc., http://www.amd.com. [18] Fairchild Semiconductor Corp., “2N3904 NPN general purpose amplifier,” http://www.fairchildsemi.com. [19] Taiwan Semiconductor Manufacturing Corp., “TSMC 0.6 mm logic 1P3M polycide 5V HSPICE models,” http://online.tsmc.com. [20] B.-S. Song and P. R. Gray, “A precision curvature-compensated CMOS bandgap reference,” IEEE J. Solid-State Circuits, vol. 18, pp. 634-643, December 1983. [21] A. Bakker and J. Huijsing, High-acccuracy CMOS smart temperature sensors, Kluwer Academic Publishers, 2000. [22] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of opamp imperfections: autozeroing, correlated double sampling and chopper stabilization,” Proceedings of the IEEE, vol. 84, no.11, pp. 1584-1614, Nov. 1996. [23] M. H. White, D. R. Lampe, F. C. Blaha, and I. A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE J. Solid-State Circuits, vol. 9, pp. 1-14, Feb. 1974. [24] C.-G. Yu and R. L. Geiger, “An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers,” IEEE J. Solid-State Circuits, vol. 29, pp. 601-610, May 1994. [25] Texas Instrumentation Inc., “TLC4501 Self-calibrating precision single operational amplifier,” http://www.ti.com. [26] J.-T. Wu, Lecture note of comparators and offset cancellation techniques of IEE 6736 analog integrated circuits (II), http://www.ics.ee.nctu.edu.tw/~jtwu. [27] A. Bakker, K. Thiele, and J. Huijsing, “A CMOS nested-chopper instrumentation amplifier with 100-nV offset,” IEEE J. Solid-State Circuits, vol. 35, pp. 1877-1883, Dec. 2000. [28] C. C. Enz, E.A. Vittoz, and F. Krummenacher, "A CMOS chopper amplifier," IEEE J. Solid-State Circuits, vol. SC-22, pp.335-343, June 1987. [29] A. Bakker, A. A. Bellekom, S. Middelhoek, and J. H. Huijsing, “Low-offset low-noise 3.5-mW CMOS spinning-current Hall effect sensor with integrated chopper amplifier,” in Proc. Eurosensors XIII, Sept. 1999, pp. 1045—1048. [30] Q. Huang and C. Menolfi, “A 200 nV offset 6.5 nV/ noise PSD 5.6 kHz chopper instrumentation amplifier in 1 mm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, Feb. 2001, pp. 362-363, 465. [31] M. G. Tuthill, "Switching bandgap reference circuit with compound DVBE," United States Patent no. 5867012, Feb. 2, 1999. [32] M. G. Tuthill, "A switched-current, switched-capacitor temperature sensor in 0.6-mm CMOS," IEEE J. Solid-State Circuits, vol. 33, pp. 1117-1122, July 1998. [33] Y.-S. Shyu, “Low operating current analog integrated circuits,” Ph.D. dissertation, National Chiao-Tung University, Hsinchu, Taiwan, June 2002. [34] A. Bakker and J. H. Huijsing, "Micropower CMOS temperature sensor with digital output," IEEE J. Solid-State Circuits, vol. 31, pp.933-937, July 1996. [35] J. H. Huijsing, F. R. Riedijk and G. v.d. Horn, "Developments in integrated smart sensors," Sensor and Actuators A, vol. 43, pp.276-288, 1993. [36] G. C. M. Meijer, A. J. M. Boomkamp, and R. J. Duguesnoy, "An accurate biomedical temperature transducer with on-chip microcomputer interfacing," IEEE J. Solid-State Circuits, vol. 23, pp.1405-1410, Dec. 1988. [37] F. R. Riedijk and J. H. Huijsing, "An integrated absolute temperature sensor with sigma-delta A-to-D conversion," Sensors and Actuators A, vol. 34, pp.249-256, 1992. [38] A. P. Brokaw, “A temperature sensor with single resistor set-point programming,” IEEE J. Solid-State Circuits, Vol. 31, pp. 1908-1915, Dec. 1996. [39] A. Bakker and J. H. Huijsing, "A low-cost high-accuracy CMOS smart temperature sensor", Proc. ESSCIRC''99, Duisburg, Germany, Semptember 1999, p.302-305. [40] P. Krummenacher and H. Oguey, "Smart temperature sensor in CMOS technology," Sensors and Actuators, vols. A21-A23, pp. 636-638, 1990. [41] Maxim Integrated Products, "MAX1617A remote/local temperature sensor with SMBus serial interface," http://www.maxim-ic.com. [42] V. Szekely, C. Marta, Z. Kohari, and M. Rencz, "CMOS sensors for on-line thermal monitoring of VLSI circuits," IEEE Trans. VLSI Systems, Vol. 5, pp.270-276, Sep. 1997. [43] F. Maloberti, "Layout of analog and mixed analog-digital circuits," in Design of analog-Digital VLSI Circuits for Telecommunication and Signal Processing, ed. J. Franca and Y. Tsividis, Prentice Hall, 1994. [44] A. Van den Bosch, M.A.F. Borremans, M.S.J. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s nyquist current-steering CMOS D/A converter,” IEEE J. Solid State Circuit, vol. 36, pp. 315-324, Mar. 2001. [45] G. v. d. Horn and J. L. Huijsing, Integrated smart sensors: design and calibration, Kluwer Academic Publishers, 1998. [46] Smart Battery System Implementers Forum, “System management bus (SMBus) specification version 2.0, August 3, 2000,” http://www.smbus.org. [47] Philips Semiconductions, “The I2C bus specification version 2.1 Jan, 2000,” http://www.semiconductors.philips.com. [48] C.-F. Lien, "Integrated temperature sensor," United States Patent no. 6019508, Feb. 1, 2000. [49] A. R. Hamadé, "A single chip all-MOS 8-bit A/D converter," IEEE J. Solid-State Circuits, vol. SC-13, no. 6, pp.785-791, Dec. 1978. [50] Analog Devices Inc., “ADM1032 ±1 °C remote and local system temperature monitor,” http://www.analog.com.
|