跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 03:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁明鏟
研究生(外文):Ming-Chan Weng
論文名稱:互補式金氧半積體電路之溫度感測器之設計
論文名稱(外文):Design of CMOS Temperature Sensors
指導教授:吳錦川
指導教授(外文):Jiin-Chuan Wu
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:91
語文別:英文
論文頁數:121
中文關鍵詞:溫度感測器互補式金氧半導體
外文關鍵詞:temperature sensorCMOS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:632
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文發表了三種具有數位輸出的互補式金氧半導體之溫度感測器。為了要達到低價、低功率和高精準度的需求,溫度感測器的設計和實作的各種考量在本論文中有完整的探討。
晶片本體溫度感測器利用寄生雙載子電晶體的基極射極接面電壓來量測晶片自己的溫度。遠端溫度感測器使用一個接成二極體形式的外接雙載子電晶體來量測遠端溫度。兩個溫度感測器採用相同的設計原理。因為採用改良式的chopper技術來消除運算放大器的輸入飄移電壓且不損失其精準度,所以可以得到很準確而且不需要微調電阻值的能隙參考電壓源。提出的準位縮放器在電壓信號上做處理,因此有較佳的線性度和精準度。使用一階的和差類比數位轉換器來產生數位輸出。因為不需要校調就有很好的線性度,所以只需要在一個溫度作校正,可以大幅降低測試成本。兩個溫度感測器都是用0.6微米的互補式金氧半積體電路技術來實現。晶片本體溫度感測器和遠端溫度感測器有效面積是分別是0.55毫米平方和0.65毫米平方。晶片本體溫度感測器校正後的溫度誤差從-20度C到130度C是±1度C,而遠端溫度感測器從溫度範圍0度C到120度C是±2度C。當取樣速率是每秒8個取樣點的時候,晶片本體溫度感測器和遠端溫度感測器的工作電流分別是3.5微安培和38微安培。
第三個發展出的智慧型溫度感測器主要針對的應用是電腦系統的熱管理。使用提出的中間電流取樣和自動範圍調整技術,可以減低類比數位轉換器之動態範圍的需求並且增加精準度。利用九位元的逐次比較型類比數位轉換器將溫度信號轉換成數位溫度。智慧型溫度感測器使用0.6微米的互補式金氧半積體電路製程來製造,其面積是5.2毫米平方。在不需要任何校調的情況下,量測到的精準度在溫度範圍60度C到100度C和0度C到120度C分別達到±0.825度C和±1.5度C。晶片可以正常運作在供應電壓3伏特到5.5伏特,且隨電壓的變化很小,每伏特只變化0.1度C。
Three CMOS temperature sensors with digital output are presented. In order to achieve the requirements of low cost, low power and high accuracy of the temperature sensors, design and implementation issues are comprehensively investigated in this thesis.
An on-chip temperature sensor uses the base-emitter voltage of the parasitic substrate bipolar transistor to measure its die temperature. A remote temperature sensor utilizes a diode-connected external bipolar transistor to measure the remote temperature. The same design principles are applied to both sensors. An improved chopping technique is used to cancel the offset of the op-amp with no loss in the accuracy, so that a precise bandgap reference voltage is obtained without resistance trimming. The proposed level scaler, which operates signals in voltage domain, has better linearity and accuracy. A first order SD ADC is used to produce the digital output. No trimming is needed to obtain good temperature linearity, so that only one-temperature calibration is needed which greatly reduces testing cost. On-chip and remote temperature sensors are realized in a 0.6 μm CMOS technology with active area of 0.55 mm2 and 0.65 mm2, respectively. After calibration, the error is ±1 °C for the on-chip temperature sensor over the temperature range of -20 to 130 °C, and ±2 °C for the remote temperature sensor over the range of 0 to 120 °C. The supply currents of the on-chip and remote temperature sensors are 3.5 μA and 38 μA at 8 samples/s, respectively.
The third developed smart temperature sensor is aimed at the application of thermal management in a computer system. The proposed medium-current sampling and auto-range technique are used to reduce the dynamic range requirement of the ADC and increase the accuracy. A 9-bit SAR ADC converts the temperature signal into digital output. Fabricated in a 0.6 μm CMOS process, the smart temperature sensor occupies an area of 5.2 mm2. The measured accuracy is ±0.825 °C and ±1.5 °C in the respective temperature range from 60 °C to 100 °C and 0 °C to 120 °C without any trimming. It can work with supply voltage from 3 V to 5.5 V, and has a very small line regulation of 0.1 °C/V.
Table of Contents
Chinese Abstract
English abstract
Acknowledgements
Table of Contents
List of Tables
List of Figures
Chapter 1 Introduction
1.1 Motivation
1.2 Research Goals and Contribution
1.3 Thesis Organization
Chapter 2 Transistor Temperature Sensors
2.1 Introduction of Temperature Sensors
2.2 Basics of Temperature Sensors
2.2.1 Temperature range
2.2.2 Temperature dependency
2.2.3 Accuracy
2.2.4 Calibration and trimming
2.2.5 Linearity error
2.2.6 Resolution
2.2.7 Line regulation
2.3 Temperature Sensors Based on Bipolar Transistors
2.4 VBE Temperature Sensor
2.4.1 Principle
2.4.2 Nonlinear characteristic
2.4.3 Accuracy
2.5 PTAT Temperature Sensor
2.5.1 Principle
2.5.2 Accuracy
2.5.3 Remote sensing
2.5.4 Other non-idealities
2.6 Summary
Chapter 3 CMOS Bandgap Voltage Reference
3.1 Errors in CMOS Bandgap References
3.2 Dynamic Offset-Cancellation Techniques
3.2.1 Autozero technique
3.2.2 Chopping technique
3.3 Chopper CMOS Bandgap Reference
3.3.1 Why chopper
3.3.2 Principle
3.3.3 Low-pass filters
3.4 Chopper Bandgap Reference with Internal Low-Pass Filter
3.4.1 Principle and circuit topology
3.4.2 Voltage drift at high chopping frequency
3.4.3 Modified chopper bandgap voltage reference
3.4.4 Simulation comparison between conventional and
modified chopper bandgap voltage reference
3.5 Implementation with SC Low-Pass
3.5.1 Modified SC low-pass filter
3.5.2 Implementation issues
3.5.3 Experimental results
3.6 Summary
Chapter 4 Low-Cost CMOS On-Chip and Remote Temperature Sensors
4.1 Introduction
4.2 CMOS On-Chip Temperature Sensor
4.2.1 Architecture
4.2.2 Principle and design
4.2.3 Measurement results
4.3 CMOS Remote Temperature Sensor
4.3.1 Architecture
4.3.2 Circuit design
4.3.3 Measurement results
4.4 Summary
Chapter 5 CMOS Smart Temperature Sensor
5.1 Introduction
5.2 Functions of the CMOS Smart Temperature Sensor
5.3 Architecture for Reducing the Dynamic Range Requirement
of the ADC
5.3.1 Architecture with a medium-current sampling
5.3.2 Cancellation of the error induced by the offset
voltage
5.4 Auto-Range Architecture for Improving Accuracy
5.4.1 Inaccuracy causes
5.4.2 Auto-range architecture
5.5 Circuit Design
5.5.1 Circuit architecture
5.5.2 Amplifier
5.5.3 Other circuitry
5.6 Measurement Results
5.7 Summary
Chapter 6 Conclusion and Future Works
6.1 Conclusion
6.2 Future Works
References
Vita
Publication List
[1] H. Iwai, "CMOS technology — year 2010 and beyond," IEEE J. Solid-State Circuits, vol. 34, pp. 357-366, Mar. 1999.
[2] S. D. Naffziger, and G. Hammond, “The implementation of the next generation 64b Itanium™ microprocessor,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, Feb. 2002, pp. 344-345, 472.
[3] M. Anders, S. K, Mathew, B. Bloechel, R. Krishnamurthy, K. Soumyanath, and S. Borkar, “A 6.5 GHz 130 nm single-ended dynamic ALU and instruction scheduler loop,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, Feb. 2002, pp. 410-412, 477.
[4] N. H. E. Weste and K. Eshraghian, “Principle of CMOS VLSI design: a system perspective,” Second Edition, Addison-Wesley, 1993
[5] Transmeta Corp., “LongRun™ power management: dynamic power management for Crusoe™ processors,” http://www.transmeta.com.
[6] M. Smith, “Measuring temperatures on computer chips with speed and accuracy,” Analog Dialogue, vol 33, no. 4, April 1999.
[7] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and design of analog integrated circuits, Forth Edition, John Wiely & Sons, 2001.
[8] Analog Devices Inc., “AD592 low cost, precision IC temperature transducer,” http://www.analog.com.
[9] G. C. M. Meijer and A. W. Herwaarden ed., Thermal sensors, Institute of Physics Publishing, 1994.
[10] National Semiconductor Corp., “LM35 precision centigrade temperature sensors,” http://www.national.com.
[11] Maxim Integrated Products, “MAX6654 1 °C accurate remote/local temperature sensor with SMBus serial interface,” http://www.maxim-ic.com.
[12] G. C. M. Meijer, “Thermal sensors based on transistors,” Sensors and Actuators, vol. 10, pp. 103-125, 1986.
[13] G. A. Rincon-Mora, “Exact curvature-correcting method for bandgap circuits,” United States Patent no. 6157245, Dec. 5, 2000.
[14] C. H. Lin and K. Bult, “A 10-b, 500-Msamples/s CMOS DAC in 0.6 mm2,” IEEE J. Solid-State Circuits, vol. 33, pp. 1948-1958, Dec. 1998.
[15] National Semiconductor Corp., “LM75 Digital temperature sensor and thermal watchdog with wwo-wire interface,” http://www.national.com.
[16] Intel Corp., “Intel® Pentium® 4 processor with 512-KB L2 cache on 0.13 m process at 2 GHz, 2.20 GHz, 2.26 GHz, 2.40 GHz, and 2.53 GHz datasheet,” http://www.intel.com.
[17] Advanced Micro Devices, “AMD Athlon™ XP processor model 6 data sheet,” Inc., http://www.amd.com.
[18] Fairchild Semiconductor Corp., “2N3904 NPN general purpose amplifier,” http://www.fairchildsemi.com.
[19] Taiwan Semiconductor Manufacturing Corp., “TSMC 0.6 mm logic 1P3M polycide 5V HSPICE models,” http://online.tsmc.com.
[20] B.-S. Song and P. R. Gray, “A precision curvature-compensated CMOS bandgap reference,” IEEE J. Solid-State Circuits, vol. 18, pp. 634-643, December 1983.
[21] A. Bakker and J. Huijsing, High-acccuracy CMOS smart temperature sensors, Kluwer Academic Publishers, 2000.
[22] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of opamp imperfections: autozeroing, correlated double sampling and chopper stabilization,” Proceedings of the IEEE, vol. 84, no.11, pp. 1584-1614, Nov. 1996.
[23] M. H. White, D. R. Lampe, F. C. Blaha, and I. A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE J. Solid-State Circuits, vol. 9, pp. 1-14, Feb. 1974.
[24] C.-G. Yu and R. L. Geiger, “An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers,” IEEE J. Solid-State Circuits, vol. 29, pp. 601-610, May 1994.
[25] Texas Instrumentation Inc., “TLC4501 Self-calibrating precision single operational amplifier,” http://www.ti.com.
[26] J.-T. Wu, Lecture note of comparators and offset cancellation techniques of IEE 6736 analog integrated circuits (II), http://www.ics.ee.nctu.edu.tw/~jtwu.
[27] A. Bakker, K. Thiele, and J. Huijsing, “A CMOS nested-chopper instrumentation amplifier with 100-nV offset,” IEEE J. Solid-State Circuits, vol. 35, pp. 1877-1883, Dec. 2000.
[28] C. C. Enz, E.A. Vittoz, and F. Krummenacher, "A CMOS chopper amplifier," IEEE J. Solid-State Circuits, vol. SC-22, pp.335-343, June 1987.
[29] A. Bakker, A. A. Bellekom, S. Middelhoek, and J. H. Huijsing, “Low-offset low-noise 3.5-mW CMOS spinning-current Hall effect sensor with integrated chopper amplifier,” in Proc. Eurosensors XIII, Sept. 1999, pp. 1045—1048.
[30] Q. Huang and C. Menolfi, “A 200 nV offset 6.5 nV/ noise PSD 5.6 kHz chopper instrumentation amplifier in 1 mm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), Dig. Tech. Papers, Feb. 2001, pp. 362-363, 465.
[31] M. G. Tuthill, "Switching bandgap reference circuit with compound DVBE," United States Patent no. 5867012, Feb. 2, 1999.
[32] M. G. Tuthill, "A switched-current, switched-capacitor temperature sensor in 0.6-mm CMOS," IEEE J. Solid-State Circuits, vol. 33, pp. 1117-1122, July 1998.
[33] Y.-S. Shyu, “Low operating current analog integrated circuits,” Ph.D. dissertation, National Chiao-Tung University, Hsinchu, Taiwan, June 2002.
[34] A. Bakker and J. H. Huijsing, "Micropower CMOS temperature sensor with digital output," IEEE J. Solid-State Circuits, vol. 31, pp.933-937, July 1996.
[35] J. H. Huijsing, F. R. Riedijk and G. v.d. Horn, "Developments in integrated smart sensors," Sensor and Actuators A, vol. 43, pp.276-288, 1993.
[36] G. C. M. Meijer, A. J. M. Boomkamp, and R. J. Duguesnoy, "An accurate biomedical temperature transducer with on-chip microcomputer interfacing," IEEE J. Solid-State Circuits, vol. 23, pp.1405-1410, Dec. 1988.
[37] F. R. Riedijk and J. H. Huijsing, "An integrated absolute temperature sensor with sigma-delta A-to-D conversion," Sensors and Actuators A, vol. 34, pp.249-256, 1992.
[38] A. P. Brokaw, “A temperature sensor with single resistor set-point programming,” IEEE J. Solid-State Circuits, Vol. 31, pp. 1908-1915, Dec. 1996.
[39] A. Bakker and J. H. Huijsing, "A low-cost high-accuracy CMOS smart temperature sensor", Proc. ESSCIRC''99, Duisburg, Germany, Semptember 1999, p.302-305.
[40] P. Krummenacher and H. Oguey, "Smart temperature sensor in CMOS technology," Sensors and Actuators, vols. A21-A23, pp. 636-638, 1990.
[41] Maxim Integrated Products, "MAX1617A remote/local temperature sensor with SMBus serial interface," http://www.maxim-ic.com.
[42] V. Szekely, C. Marta, Z. Kohari, and M. Rencz, "CMOS sensors for on-line thermal monitoring of VLSI circuits," IEEE Trans. VLSI Systems, Vol. 5, pp.270-276, Sep. 1997.
[43] F. Maloberti, "Layout of analog and mixed analog-digital circuits," in Design of analog-Digital VLSI Circuits for Telecommunication and Signal Processing, ed. J. Franca and Y. Tsividis, Prentice Hall, 1994.
[44] A. Van den Bosch, M.A.F. Borremans, M.S.J. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s nyquist current-steering CMOS D/A converter,” IEEE J. Solid State Circuit, vol. 36, pp. 315-324, Mar. 2001.
[45] G. v. d. Horn and J. L. Huijsing, Integrated smart sensors: design and calibration, Kluwer Academic Publishers, 1998.
[46] Smart Battery System Implementers Forum, “System management bus (SMBus) specification version 2.0, August 3, 2000,” http://www.smbus.org.
[47] Philips Semiconductions, “The I2C bus specification version 2.1 Jan, 2000,” http://www.semiconductors.philips.com.
[48] C.-F. Lien, "Integrated temperature sensor," United States Patent no. 6019508, Feb. 1, 2000.
[49] A. R. Hamadé, "A single chip all-MOS 8-bit A/D converter," IEEE J. Solid-State Circuits, vol. SC-13, no. 6, pp.785-791, Dec. 1978.
[50] Analog Devices Inc., “ADM1032 ±1 °C remote and local system temperature monitor,” http://www.analog.com.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊