跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/02 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許宏孝
研究生(外文):Hung-Hsiao Hsu
論文名稱:應用有限元素法作高壓高頻變壓器之三維穩態熱傳分析
論文名稱(外文):Three-Dimensional Steady-State Thermal Analyses of a High Voltage and High Frequency Transformer Using Finite Element Method
指導教授:黃昌圳黃昌圳引用關係
指導教授(外文):Chang-Chun Hung
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:86
中文關鍵詞:三維有限元素法等效熱傳導係數高壓高頻變壓器
外文關鍵詞:three-dimensional finite element methodhigh-voltage high-frequency transformerequivalent thermal conductivities
相關次數:
  • 被引用被引用:7
  • 點閱點閱:484
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:1
設計可靠且經濟的高壓高頻變壓器,必須預先瞭解其內部的溫度分佈情形。為了解析變壓器的熱傳,本論文首先建構變壓器的模型,再利用三維有限元素法來進行分析。因為變壓器的構造複雜,使用的材料及電磁特性互異,如鐵芯、高低壓繞組、絕緣層及絕緣油等,若僅使用二維模型來分析,則無法完整地描述問題的全貌,但應用三維模型作分析時,將耗費許多計算時間。為簡化分析,本文配合適當的三維四面體元素建立,推導高低壓繞組的等效熱傳導係數,以得到合理的答案。

To design a reliable and economical high voltage and high frequency transformer, it is necessary to be able to predict accurately the temperature distribution within the transformer. For thermal analysis, this thesis presents a model for the transformer. Then, the three-dimensional finite element method is conducted to analyze. Due to the complicated physical geometry of the transformer, such as the anisotropic nature of the iron, low and high voltage windings, insulation layers and insulation oil, a two-dimensional thermal model can not describe the problem accurately. Hence, a three-dimensional thermal model is employed for this analysis. To reduce the simulation time, the equivalent thermal conductivities for low and high voltage windings are derived based on the choice of proper size of three-dimensional tetrahedral elements. Reasonable results are obtained.

摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
縮寫及符號對照表 xii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻研讀 2
1.3 研究方法 3
1.4 本論文的貢獻 4
1.5 論文內容概述 5
第二章 三維熱傳分析 6
2.1 三維熱傳支配方程式 6
2.2三維熱傳穩態有限元素方程式推導 7
2.3 三維有限元素分析流程 9
第三章 高壓高頻變壓器模型之建構 15
3.1變壓器的規格 15
3.2變壓器之尺寸與分析模型 16
3.2.1變壓器規格與尺寸 16
3.2.2變壓器分析模型 16
3.3 等效熱傳導率 17
3.3.1變壓器鐵芯之等效熱傳導率 17
3.3.2低壓繞組之等效熱傳導率 18
3.3.3高壓繞組之等效熱傳導率 19
3.4 熱源計算 21
3.4.1變壓器鐵芯熱源分佈 21
3.4.2低壓側繞組熱源分佈 21
3.4.3高壓側繞組熱源分佈 22
3.4.4整流設備熱源分佈 22
3.5 高壓高頻變壓器分析結果 23
第四章 影響變壓器溫昇的要素 55
4.1 工作頻率對變壓器溫昇之影響 55
4.2 鐵芯材質對變壓器溫昇之影響 55
4.3 負載電流對變壓器溫昇之影響 56
4.4 二極體規格對PCB溫昇之影響 57
4.5 對整體效率之影響 58
第五章 結論 66
參考文獻 68
作者簡介 72

[1]R. Petkov, “Optimum Design of a High-Power, High-Frequency Transformer,” IEEE Transactions on Power Electron, vol. 11, no. 1, pp. 33-42, January 1996.
[2]W. G. Hurley, W. H. Wolfe and J. G. Breslin, “Optimized Transformer Design: Inclusive of High-Frequency Effects,” IEEE Transactions on Power Electron, vol. 13, no. 4, pp. 651-659, July 1998.
[3]J. C. Fothergill, P. W. Devine and P.W. Lefley, “A Novel Prototype Design for a Transformer for High Voltage, High Frequency, High Power Use,” IEEE Transactions on Power Delivery, vol. 16, no. 1, pp. 89-98, January 2001.
[4]黃昌圳,應用有限元素作電氣設備與電機之場分析,博士論文,1989年1月。
[5]黃昌圳,江奕旋,“直埋式地下電纜之熱傳分析”,逢甲學報第三十期,pp. 407-420,1996年12月。
[6]黃昌圳,吳信賢,柏小松,“三相感應電動機之熱傳分析”,節約能源論文發表會,pp. 159-171,1997年6月。
[7]G. Callander, A. Gardiner and S. Johnson, “Analytical Minimal Loss Design of Transformers for High Frequency Switch Mode Converters,” IEEE Transactions on Industry Applications, vol. 1, no. 0, pp. 361-366, 1995.
[8]G. L. Alegi and W. Z. Black, “Real-Time Thermal Model for an Oil-Immersed, Forced-Air Cooled Transformer,” IEEE Transactions on Power Delivery, vol. 5, no. 2, pp. 991-999, April 1990.
[9]謝沐田編著,高低頻變壓器設計,全華圖書股份有限公司,1992年6月。
[10]吳顯堂編譯,實用變壓器設計學,全華圖書股份有限公司,1992年8月。
[11]S. V. Preiningerova, C. Sc and M. Pivrnec, “Temperature Distribution in the Coil of a Transformer Winding,” IEE PROC., vol. 123, no. 3, pp. 218-222, March 1977.
[12]H. G. Cho, U. Y. Lee, S. S. Kim and Y. D. Park, “The Temperature Distribution and Thermal Stress Analysis of Pole Cast Resin Transformer for Power Distribution,” IEEE Electrical Insulation, Proceedings of 2002 International Conference, vol. 39, no. 1, pp. 384-386, April 2002.
[13]A. D. Podoltsev, I. N. Kucheryavaya and B. B. Lebedev, “Analysis of Effective Resistance and Eddy-Current Losses in Multi-Turn Winding of High-Frequency Magnetic Components,” IEEE Transactions on Magnetics, vol. 39, no. 1, pp. 539-548, January 2003.
[14]N. Hardt and D. Koenig, “Testing of Insulating Materials at High-Frequency and High Voltage Based on the Tesla Transformer Principle,” IEEE Transactions on Electrical Insulation, vol. 2, pp. 517-520, June 1998.
[15]R. Petkov, “Design Issues of the High-Power High-Frequency Transformer,” IEEE Power Electronics and Drive Systems, Proceedings of 1995 International Conference, vol. 1, pp. 401-410, February 1995.
[16]A. I. Pressman, Switching Power Supply Design, Second Edition, McGraw-Hill, 1997.
[17]K. H. Huebner, E. A. Thornton and T. G. Byron, The Finite Element Method for Engineers, Third Edition, John Wiley & Sons, Inc, 1975.
[18]R. W. Erickson, Fundamentals of Power Electronics, Second Edition, University of Colorado Boulder, Colorado, 2001.
[19]M. H. Kheraluwala, D.W. Novotny and D.M. Divan, “Design Consideration for High Power High Frequency Transformer,” IEEE Power Electronics Specialists Conference, pp. 734-742, 1990.
[20]J. P. Holman, Heat Transfer, McGraw-Hill Book Company, 1989.
[21]許明祥,李永勳,莊景芳,鄭博泰,李宗璘,“行波管放大器應用降壓電流饋入型全橋式轉換器之設計與分析”,第二屆台灣電力電子研討會,pp. 10-15,2003年8月。
[22]DeWitt Incropera原著,張仲卿,侯順雄,張進寬,杜鳯棋譯者,熱傳遞,高立圖書有限公司,2003年2月。
[23]黃昌圳編著,有限元素法電磁場分析講義,2001年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top