跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林思潔
研究生(外文):Szu-Chieh Lin
論文名稱:藉由代謝物調控-1核醣體框架轉移之研究
論文名稱(外文):Regulation of -1 programmed ribosomal frameshifting by a metabolite-responsive RNA pseudoknot
指導教授:張功耀
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:51
中文關鍵詞:-1核醣體框架轉移滑動區域
外文關鍵詞:-1 programmed ribosomal frameshiftingslippery sitepseudoknot
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在生物體中有許多方式可調控轉譯反應,進而影響蛋白質的產生與否,-1核醣體框架轉移(-1 programmed ribosomal frameshifting, -1 PRF)則是其中一種。-1核醣體框架轉移在許多病毒中可發現,病毒藉由此種機制來調控其所需蛋白質間之比例。要發生-1核醣體框架轉移必須有兩個因素,一為滑動區域(slippery site),slippery site為一組由7個核&;#33527;酸所組成的特定序列,位於可產生-1核醣體框架轉移RNA之5’端。第二個因素為距滑動區域5-7個核&;#33527;酸下游處的特殊RNA二級結構,稱為stimulator RNA。能作為stimulator RNA的二級結構可能有許多種,如HIV-1的hairpin,BWYV的H-type pseudoknot或是SARS-CoV的three-stem pseudoknot等,而其中最為常見的為pseudoknot類型。
2008年Joy Xin Wang 等人的研究中發現有一特定序列RNA(68 metH RNA)可結合S-adenosylhomocysteine (SAH) 這個代謝產物以做為一個riboswitch,可用來調控S-adenosyl-L-methionine (SAM)循環再生系統。而68 metH RNA二級結構預測為一RNA pseudoknot。之前本實驗室已証實68 metH RNA在加入SAH後的確可引起-1核醣體框架轉移。而我則利用定點突變方式探討68 metH RNA上特定鹼基配對改變對-1核醣體框架轉移效率的影響。實驗數據指出當破壞stem區域鹼基配對導致無法形成stem結構時,即使在最高SAH濃度下也幾乎無法偵測到-1核醣體框架轉移之訊號,所以stem區域對引發-1核醣體框架轉移是必須的。並且若是增加stem 2的穩定性則可使SAH引起的-1框架轉移效率增加,可作為調控68 metH RNA藉由結合SAH引發-1核醣體框架轉移之處。
由於將68 metH RNA進行序列比對後發現有幾個鹼基在不同菌種中具有高度保留性,利用定點突變置換序列後就無法引起-1核醣體框架轉移反應,表示具高度保留性之鹼基扮演很重要的地位。


There are many ways to regulate translation, and -1 programmed ribosomal frameshifting (-1 PRF) is one of them. -1 PRF is found in many type of viruses which can regulate the ratio of essential proteins by -1 PRF. Efficient -1 PRF requires two RNA elements. The first one is a hepta-nucleotide slippery sequence, located in the 5’ end named “slippery site”. The second element is a stimulator RNA structure, located 5-7 nucleotides downstream of the slippery site. There are many kinds of structures that can be a stimulator RNA, such as a simple hairpin in HIV-1, the H-type pseudoknot in BWYV or the three-stem pseudoknot in SARS-CoV. The most common of them is a hairpin-type pseudoknot.
A specific RNA motif named 68 metH RNA was found in 2008. This RNA motif, as a riboswitch, can regulate S-adenosyl-L-methionine (SAM) recycling by binding S-adenosylhomocysteine (SAH). In addition, secondary structure prediction suggested that 68 metH RNA is a pseudoknot. Previously, we have confirmed the 68 metH RNA can induce -1 PRF in response to SAH concentration. I demonstrate here the influence of the base pairs in the 68 metH RNA on SAH-dependent -1 PRF by mutagenesis. When the stem regions was disrupted, no -1 PRF signal could be detected even in the presence of high SAH concentration. Therefore, the 68 metH RNA requires all the stem regions to induce SAH-dependent -1 PRF. Furthermore, I also demonstrate that increasing the stability of stem 2 can improve the SAH-dependent -1 PRF efficiency.
Sequence alignment of SAH riboswitch suggests that several nucleotides are highly conserved. The 68 metH RNA could not induce -1 PRF when these highly conserved nucleotides were mutated. It thus implies that these nucleotides play important roles in SAH-dependent -1 PRF of 68 metH RNA.


目錄......................................................I
圖表目錄................................................III
中文摘要.................................................IV
Abstract..................................................V
第一章 背景介紹..........................................1
1.1 轉譯作用讀取框架位移..................................1
1.2 計劃性-1核醣體框架轉移 (-1 programmed ribosomal frameshifting,-1 PRF)....................................2
1.2.1 -1 PRF在病毒蛋白轉譯作用中扮演之角色................2
1.2.2 -1 PRF產生訊號......................................2
1.2.3 導致發生-1 PRF之stimulator RNA三度空間結構特徵......4
1.2.4 -1 PRF作用機制......................................7
1.3 Riboswitch............................................9
1.3.1 Riboswitch作用機制..................................9
1.3.2 Riboswitch結構.....................................11
1.4 研究動機及目標 .......................................12
第二章 材料與方法 .......................................13
2.1 質體構築.............................................13
2.1.1 聚合酶連鎖反應 (polymerase chain reaction, PCR)....13
2.1.2 勝任細胞(competent cell)製作.......................13
2.1.3 轉型(transformation)...............................14
2.1.4 質體DNA萃取........................................14
2.1.5 構築定點突變質體DNA................................15
2.2 -1 框架轉移效率分析 (-1 frameshift efficiency assay).15
2.2.1 SDS 電泳分析 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis, SDS-PAGE)...........................15
2.2.2試管內轉錄作用製備RNA (in vitro transcription)......16
2.2.3 -1 框架轉移效率分析................................16
第三章 實驗結果.........................................18
3.1 pseudoknot中各stem對68 metH RNA引起之-1 PRF的影響....18
3.1.1 實驗所用SAH motif RNA之二級結構預測................18
3.1.2 破壞stem區域鹼基配對可大幅降低由SAH引起之-1 PRF效率,若復原鹼基配對則可使-1 PRF再次發生.......................18
3.1.3 若將stem區更大範圍鹼基對破壞配對後再加以復原,除P2突變株外皆無法有SAH所引起之-1 PRF反應產生 19
3.2 針對兩次突變不同點進行定點突變並分析-1 PRF效率 19
3.2.1 針對P1部份於兩次stem mutation差異處進行定點突變並分析-1 PRF效率 19
3.2.2 針對P4部份於兩次stem mutation差異處進行定點突變並分析-1 PRF效率 21
3.3 改變P2區域穩定性對-1 PRF效率之影響 22
3.3.1 增加P2 stem後端區域穩定性可提昇-1 PRF效率 22
3.3.2 P2UACG及P4CG突變株皆可提昇-1 PRF效率,卻無法同時加成 22
3.4 slippery site及spacer對 -1 PRF效率的影響 23
3.4.1 不同slippery site序列可提昇 -1 PRF效率 23
3.4.2 不同sapcer長度之pseudoknot無法得到較高的-1 PRF效率 24
3.5. 置換L1核苷酸會導致68 metH RNA無法藉由結合SAH引發-1 PRF反應 24
第四章 討論 26
4.1 68 metH RNA晶體結構與SAM-III riboswitch晶體結構之關聯 26
4.2 stem區域如何影響-1 PRF效率 27
第五章 實驗圖表 29
第六章 附錄 41
附錄1 實驗中所使用引子 41
附錄2 構築突變株所用之引子及突變位 45
附錄3 未進行實驗之突變株示意圖 47
第七章 參考文獻 48


Brierley, I. (1995) Ribosomal frameshifting viral RNAs. J Gen Virol 76 ( Pt 8),1885-92.
Chamorro, M., Parkin, N. and Varmus, H.E. (1992) An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc Natl Acad Sci U S A 89(2), 713-7.
Chandler, M. and Fayet, O. (1993) Translational frameshifting in the control of transposition in bacteria. Mol Microbiol 7(4), 497-503.
Chou, M.-Y., Lin, S.-C. and Chang, K.-Y. (2010) Stimulation of -1 programmed ribosomal frameshifting by a metabolite-responsive RNA pseudoknot. RNA, rna.1922410.
Clark, M.B., Jänicke, M., Gottesbühren, U., Kleffmann, T., Legge, M., Poole, E.S. and Tate, W.P. (2007) Mammalian Gene PEG10 Expresses Two Reading Frames by High Efficiency –1 Frameshifting in Embryonic-associated Tissues. Journal of Biological Chemistry 282(52), 37359-37369.
Crick, F.H. (1966) Codon--anticodon pairing: the wobble hypothesis. J Mol Biol 19(2), 548-55.
Dinman, J.D., Icho, T. and Wickner, R.B. (1991) A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci U S A 88(1), 174-8.
Dinman, J.D., Richter, S., Plant, E.P., Taylor, R.C., Hammell, A.B. and Rana, T.M. (2002) The frameshift signal of HIV-1 involves a potential intramolecular triplex RNA structure. Proc Natl Acad Sci U S A 99(8), 5331-6.
Dulude, D., Berchiche, Y.A., Gendron, K., Brakier-Gingras, L. and Heveker, N. (2006) Decreasing the frameshift efficiency translates into an equivalent reduction of the replication of the human immunodeficiency virus type 1. Virology 345(1), 127-36.
Farabaugh, P.J. (1996) Programmed translational frameshifting. Annu Rev Genet 30, 507-28.
Gesteland, R.F., Weiss, R.B. and Atkins, J.F. (1992) Recoding: reprogrammed genetic decoding. Science 257(5077), 1640-1.
Giedroc, D.P. and Cornish, P.V. (2009) Frameshifting RNA pseudoknots: structure and mechanism. Virus Res 139(2), 193-208.
Giedroc, D.P., Theimer, C.A. and Nixon, P.L. (2000) Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J Mol Biol 298(2), 167-85.
Gilbert, S.D., Rambo, R.P., Van Tyne, D. and Batey, R.T. (2008) Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat Struct Mol Biol 15(2), 177-82.
Grentzmann, G., Ingram, J.A., Kelly, P.J., Gesteland, R.F. and Atkins, J.F. (1998) A dual-luciferase reporter system for studying recoding signals. RNA 4(4), 479-86.
Harger, J.W., Meskauskas, A. and Dinman, J.D. (2002) An "integrated model" of programmed ribosomal frameshifting. Trends Biochem Sci 27(9), 448-54.
Jacks, T. and Varmus, H.E. (1985) Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230(4731), 1237-42.
Kim, J.N. and Breaker, R.R. (2008) Purine sensing by riboswitches. Biol Cell 100(1), 1-11.
Klein, D.J., Edwards, T.E. and Ferre-D''Amare, A.R. (2009) Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol 16(3), 343-344.
Kurland, C.G. (1992) Translational accuracy and the fitness of bacteria. Annu Rev Genet 26, 29-50.
Leger, M., Dulude, D., Steinberg, S.V. and Brakier-Gingras, L. (2007) The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift. Nucleic Acids Res 35(16), 5581-92.
Lu, C., Smith, A.M., Fuchs, R.T., Ding, F., Rajashankar, K., Henkin, T.M. and Ke, A. (2008) Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat Struct Mol Biol 15(10), 1076-1083.
Mandal, M. and Breaker, R.R. (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5(6), 451-63.
Montange, R.K. and Batey, R.T. (2006) Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441(7097), 1172-5.
Osborne, S.E. and Ellington, A.D. (1997) Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chem Rev 97(2), 349-370.
Park, J. and Morrow, C.D. (1991) Overexpression of the gag-pol precursor from human immunodeficiency virus type 1 proviral genomes results in efficient proteolytic processing in the absence of virion production. J. Virol. 65(9), 5111-5117.
Plant, E.P., Jacobs, K.L., Harger, J.W., Meskauskas, A., Jacobs, J.L., Baxter, J.L., Petrov, A.N. and Dinman, J.D. (2003) The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting. RNA 9(2), 168-74.
Pleij, C.W., Rietveld, K. and Bosch, L. (1985) A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res 13(5), 1717-31.
Serganov, A. (2009) The long and the short of riboswitches. Curr Opin Struct Biol 19(3), 251-9.
Serganov, A., Yuan, Y.R., Pikovskaya, O., Polonskaia, A., Malinina, L., Phan, A.T., Hobartner, C., Micura, R., Breaker, R.R. and Patel, D.J. (2004) Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol 11(12), 1729-41.
Shigemoto, K., Brennan, J., Walls, E., Watson, C.J., Stott, D., Rigby, P.W. and Reith, A.D. (2001) Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting. Nucleic Acids Res 29(19), 4079-88.
Stahl, G., McCarty, G.P. and Farabaugh, P.J. (2002) Ribosome structure: revisiting the connection between translational accuracy and unconventional decoding. Trends in Biochemical Sciences 27(4), 178-183.
Su, L., Chen, L., Egli, M., Berger, J.M. and Rich, A. (1999) Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat Struct Biol 6(3), 285-92.
ten Dam, E.B., Pleij, C.W. and Bosch, L. (1990) RNA pseudoknots: translational frameshifting and readthrough on viral RNAs. Virus Genes 4(2), 121-36.
Thore, S., Leibundgut, M. and Ban, N. (2006) Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312(5777), 1208-11.
Tsuchihashi, Z. (1991) Translational frameshifting in the Escherichia coli dnaX gene in vitro. Nucleic Acids Res 19(9), 2457-62.
Tsuchihashi, Z. and Kornberg, A. (1990) Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci U S A 87(7), 2516-20.
Tu, C., Tzeng, T.H. and Bruenn, J.A. (1992) Ribosomal movement impeded at a pseudoknot required for frameshifting. Proc Natl Acad Sci U S A 89(18), 8636-40.
Wakeman, C.A., Winkler, W.C. and Dann, C.E., 3rd. (2007) Structural features of metabolite-sensing riboswitches. Trends Biochem Sci 32(9), 415-24.
Wang, J.X., Lee, E.R., Morales, D.R., Lim, J. and Breaker, R.R. (2008) Riboswitches that Sense S-adenosylhomocysteine and Activate Genes Involved in Coenzyme Recycling. Molecular Cell 29(6), 691-702.
Wills, N.M., Moore, B., Hammer, A., Gesteland, R.F. and Atkins, J.F. (2006) A Functional –1 Ribosomal Frameshift Signal in the Human Paraneoplastic Ma3 Gene. Journal of Biological Chemistry 281(11), 7082-7088.
Winkler, W.C. and Breaker, R.R. (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59, 487-517.
Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13), 3406-15.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top