跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.42) 您好!臺灣時間:2025/10/01 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李國豪
研究生(外文):Guo-hao Li
論文名稱:使用親水瓊脂膠體奈米微粒系統來促進Indomethacin對水之溶解速率
論文名稱(外文):Application of Agar Hydrogel Based Nanoparticulate System for Enhancing the Dissolution Rates of Indomethacin
指導教授:林恆弘林恆弘引用關係
指導教授(外文):Hung-hao Lin
學位類別:碩士
校院名稱:嘉南藥理科技大學
系所名稱:生物科技系暨研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:129
中文關鍵詞:奈米粒子親水膠體吲哚美洒辛(Indomethacin)水難溶性
外文關鍵詞:IndomethacinWater-insolubleNanoparticlesHydrogel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:462
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
水難溶性藥物一般有生體可用率不佳的特性。此實驗的研究目的,是設計含有奈米粒子的膠體包埋系統來包埋Indomethacin,以增進其水溶性。親水膠體奈米微粒懸浮劑包埋Indomethacin的製作,藉由將藥物溶於固化凝膠以機械粉碎法,研磨成奈米微粒,再利用凍晶乾燥將懸浮劑凍乾。凍晶乾燥製程中,親水膠體因水的含量及溫度的變化,最後可能產生水難溶性的聚集,藉由pH值的調整及抗凍劑加入來防止聚集,在凍晶乾燥後儲存。藉由凍晶乾燥後的乾粉及加水復原的懸浮劑,進行物理性質的檢測。粒子大小是經由表面電位及粒徑大小分佈分析儀進行測定;除外,藥物-聚合膠體的交互作用則使用卡式熱分析儀(DSC)分析,藥物溶解度的測定是用濁度計來檢測。結果顯示,固化凝膠機械粉碎法可得到粒徑在 40 nm到 400 nm的Indomethacin-親水膠體奈米粒子。在凍晶乾燥前將奈米粒子鹼化及加入抗凍劑,也顯示對包埋的奈米粒子產生更好的安定性。由DSC的結果也顯示在凍晶乾燥的製造過程中,並無明顯的化學交互作用。由凍晶乾粉製程的奈米粒子,能迅速的在水中分散,形成清澈且穩定的狀態。此結果將有助於發展其他水難溶性藥物助溶系統。
Abstract
The bioavailability of water-insoluble drug is poor. The aim of the present study was to design a suspension composed of numberless nanoparticles to improve the solubility of indomethacin. Hydrogel based nanoparticles encapsulating indomethacin were prepared by using the solid jelly pulverization technique, and then freeze-dry to lyophilized powder. In the freeze-drying process, hydrogel based nanoparticles undergo change of temperature and water content, eventually forming water-insoluble aggregates. The pH value adjusted as well as the cryoprotectants was added to stable the dispersion system during formulation, lyophilization, and storage. The physical studies of hydrogel based nanoparticles were performed in a freeze-drying or resuspended form. The size of the indomethacin- hydrogel nanoparticles was assessed using a LS particle size analyzer. In addition, any drug-polymer interactions were assessed using a differential scanning calorimeter (DSC). The dissolution was determined by the apparatus of Franz diffusion and analyzed by turbidimeter. The results show that solid jelly pulverization technique yielded indomethacin hydrogel nanoparticles with a mean diameter of 40 nm to 400 nm. Alkalization of suspension containing nanoparticles or blending of cryoprotectants in suspension before the freeze-drying process showed better stabilization of encapsulated drug. The DSC measurements indicated that the chemical interaction does not occur among the components during manufacturing processes and lyophilized powder. The lyophilized powder of nanoparticles reconstitutes rapidly, the resulting product has remarkable clarity, and stability. The above results will be helpful to possible development of the other water-insoluble drug delivery systems.
目錄(Contents)
中文摘要......................................................I
Abstract......................................................II
誌謝..........................................................IV
目錄..........................................................V
表目錄........................................................IX
圖目錄........................................................X
縮寫表........................................................XV
第一章 緒論...................................................1
第二章 材料與方法.............................................9
§2-1 儀器設備及藥品...........................................9
2-1-1 儀器設備................................................9
2-1-2 藥品....................................................11
§2-2 製作方法.................................................12
2-2-1 含IMC的溶媒的製作.......................................12
2-2-2 Gel的製作...............................................12
2-2-3 Gel粒子的研磨...........................................14
2-2-4 檢量線的製作............................................14
§2-3 實驗測試.................................................15
2-3-1 Gel硬度測試.............................................15
2-3-2 IMC在不同物質下的溶解度試驗.............................16
2-3-2-1 IMC在水-醇中的溶解度試驗..............................16
2-3-2-2 酸鹼影響下對IMC在溶液中的溶解度影響試驗...............17
2-3-2-3 水-醇溶媒系統加入NH4OH時IMC最大溶解度試驗.............17
2-3-2-4 Agar Gel對IMC的助溶效果試驗...........................17
2-3-2-5 加入酸或鹼對IMC-Agar Gel的助溶效果....................18
2-3-3 加入酸或鹼後對Gel及溶媒的pH值變化測定...................19
2-3-3-1 酸或鹼對含Gel粒子分散懸液的pH值影響...................19
2-3-3-2 酸或鹼對溶媒的pH值影響................................19
2-3-4 光線、濕度及溫度變化對IMC-Agar Gel的助溶影響............20
2-3-5 Agar Gel微粒之測定......................................20
2-3-5-1 Agar Gel微粒之粒徑測定................................20
2-3-5-2 Agar Gel在光學顯微鏡下的外觀觀察......................21
2-3-6 奈米微粒懸液的流變學特性................................21
2-3-7 IMC在不同組成的溶媒及Agar Gel中的DSC實驗................21
2-3-7-1 溶媒對IMC的影響.......................................22
2-3-7-2 Gel粒子和藥物的交互情形...............................23
2-3-8 以抗凍劑防止奈米微粒在結凍過程凝集之濁度實..............23
2-3-9 IMC及Gel粒子在電子顯微鏡下型態..........................25
2-3-10 成品在DSC下的熱流量變化................................26
2-3-11 成品之包埋率...........................................26
2-3-12 成品加水還原的情況.....................................27
第三章 結果...................................................28
§3-1 Gel硬度測定..............................................28
3-1-1 Agar gel的硬度變化測定..................................28
3-1-2 含酸或鹼的Agar gel外觀變化及硬度測定....................29
§3-2 IMC在不同物質下的溶解度試驗..............................29
3-2-1 IMC在溶液中的溶解度實驗.................................29
3-2-2 酸鹼影響下對IMC在溶液中的溶解度影響試驗.................31
3-2-3 水-醇溶媒系統加入NH4OH時IMC最大溶解度試驗...............31
3-2-4 Agar gel對IMC的助溶效果試驗.............................32
3-2-5 加入酸或鹼對IMC-Agar Gel的助溶效果......................35
§3-3 加入酸或鹼後對Gel及溶媒的pH值變化測定....................36
3-3-1 酸或鹼對含Gel粒子分散懸液的pH值影響.....................36
3-3-2 酸或鹼對溶媒的pH值影響..................................36
§3-4 光線、濕度及溫度變化對IMC-Agar Gel的助溶影響.............37
§3-5 Agar Gel微粒的測定.......................................38
§3-6 流變學特性之測定.........................................39
§3-7 IMC在不同組成的溶媒及Agar Gel中的DSC實驗.................39
3-7-1 IMC在不同組成的溶媒中的DSC變化測試......................39
3-7-2 Gel粒子和藥物的交互情形.................................40
§3-8 以抗凍劑防止奈米微粒在結凍過程凝集之濁度實驗.............40
§3-9 IMC及Gel粒子在電子顯微鏡下型態...........................41
§3-10 成品在DSC下的熱流量變化.................................41
§3-11 成品之包埋率............................................41
§3-12 成品加水還原的情況......................................43
第四章 討論...................................................44
第五章 結論...................................................47
參考文獻......................................................48


表目錄
表 2-1:IMC與於溶媒的配置比例.................................55
表 2-2:Agar Gel的製作比例....................................56
表 2-3:Agar Gel對IMC的助溶效果製作比例.......................57
表 2-4:酸鹼對Agar Gel影響的製作比例..........................58
表 2-5:含酸鹼下的Agar gel對IMC助溶效果的製作比例.............59
表 2-6:鹼性助溶下,Agar gel的製作比例........................60
表 2-7:檢量線的配置比例......................................60
表 2-8:不同狀態下製成的IMC進行DSC時的配置比例與方式..........60
表 2-9:抗凍劑與Agar Gel粒子的混合比例........................61
表 3-1:四項成品的包埋率與包埋量的計算表......................62


圖目錄
圖 1-1 奈米微粒的包埋方式。...................................63
圖 1-2 顯微鏡下乳劑的型態。...................................63
圖 1-3 多重乳化相的製作方式。.................................63
圖 1-4 乳劑多重相與二重相圖示。...............................64
圖 1-5 依官能基不同所分類的界面化性劑種類.....................64
圖 1-6界面活性劑產生產生微胞的進程。..........................65
圖 1-7 微胞產生的類型及清潔劑的產生清潔效果之圖示。...........65
圖 1-8本實驗的實驗流程簡圖。..................................66
圖 1-9 Agarose的結構式。......................................67
圖 1-10 Agar 凝膠化的機轉。...................................67
圖 1-11 Indomethacin結構式。..................................68
圖 1-12 Indomethacin結晶結構式。..............................68
圖 1-13 非類固醇藥類的抑制途徑。..............................69
圖 2-1 水醇比9:1時IMC在267nm的檢量線。.......................69
圖 2-2 含IMC溶液過濾抽取方式。................................70
圖 2-3 成品之包埋率的實驗圖示。...............................70
圖 3-1-1 不含乙醇的下,不同的降溫速的對Agar Gel 硬度的影響。..71
圖 3-1-2 含10 %乙醇時,不同的降溫速度對Agar Gel 硬度的影響。..71
圖 3-1-3 含20 %乙醇時,不同的降溫速度對Agar Gel 硬度的影響。..71
圖 3-1-4 30 ℃下不同乙醇濃度對Agar Gel 硬度的影響。...........72
圖 3-1-5 0 ℃下不同乙醇濃度對Agar Gel 硬度的影響。............72
圖 3-1-7 不同醋酸量對Agar gel 外觀的影響。....................73
圖 3-1-8 不同氨水量對Agar gel 外觀的影響。....................74
圖 3-1-9 加入醋酸及氨水的Agar gel 硬度實驗結果。..............75
圖 3-2-1 IMC-水-醇製備後,時間對IMC溶解度的影響,吸光值部分。.76
圖 3-2-2 將檢量線方程式代入3-2-1的吸光值後,換算得的IMC濃度與時間的關係圖。..........................................................76
圖 3-2-3 醋酸加入IMC-水-醇中所產生的現象。....................77
圖 3-2-4 醋酸對IMC-水-醇的NTU變化。...........................78
圖 3-2-5 氨水加入IMC-水-醇中所產生的現象。....................79
圖 3-2-6 氨水對IMC-水-醇的NTU變化。...........................79
圖 3-2-7 室溫下冷卻的Agar Gel (水醇比4:1),冷卻後的外觀。.....80
圖 3-2-8 30℃下水醇比9:1對IMC溶解度的影響。...................81
圖 3-2-9 20℃下水醇比9:1對IMC溶解度的影響。...................81
圖 3-2-10 0℃下水醇比9:1對IMC溶解度的影響。...................81
圖 3-2-11 30℃下水醇比4:1對IMC溶解度的影響。..................82
圖 3-2-12 20℃下水醇比4:1對IMC溶解度的影響。..................82
圖 3-2-13 0℃下水醇比4:1對IMC溶解度的影響。...................82
圖 3-2-14 酸或鹼對IMC-Agar Gel的影響。........................83
圖 3-2-15 圖3-2-14中(A)部分的A2~A7及(B)部分的B2~B7俯視圖。....84
圖 3-2-16 圖3-2-14中(C)部分的C2~C7及(D)部分的D2~D7俯視圖。....85
圖 3-2-17 圖3-2-14中(E)部分的E2~E7及(F)部分的F2~F7俯視圖。....86
圖 3-2-18 由濁度計測定酸或鹼對IMC-Agar Gel的影響的結果。......87
圖 3-3-1 Agar Gel 製作中未加入或加入醋酸及氨水後,凝固Agar Gel的pH值。..........................................................88
圖 3-3-2 水:乙醇 = 9:1時,逐次加入等量的醋酸後,所測得的pH值。..........................................................89
圖 3-3-3 水:乙醇 = 4:1時,逐次加入等量的醋酸後,所測得的pH值。..........................................................89
圖 3-3-4 水:乙醇 = 9:1時,加入氨水前後,所測得的pH值。......90
圖 3-3-5 水:乙醇 = 4:1時,加入氨水前後,所測得的pH值。......90
圖 3-4-1 Agar gel在室外保存的情況下。.........................91
圖 3-4-2 Agar gel室內保存的情況下。...........................91
圖 3-4-3 Agar gel陰涼處保存的情況下。.........................92
圖 3-4-4 Agar gel低溫下保存產生的變化。.......................92
圖3-4-5 儲存第一天的濁度值。..................................93
圖 3-4-6 圖3-4-5的群組直線圖。................................93
圖 3-4-7 第三天的濁度值。.....................................94
圖 3-4-8 圖3-4-7的群組直線圖。................................94
圖 3-4-9 第三天的濁度值。.....................................95
圖 3-4-10 圖3-4-9的群組直線圖。...............................95
圖 3-5-1 1% Agar Gel分別研磨不同的時間,所得 的奈米粒子大小分佈
圖。..................................................96
圖 3-5-2 含1.25% Agar Gel分別研磨不同的時間,所得的奈米粒子大小分
佈圖。.................................................96
圖 3-5-3 含1.5% Agar Gel分別研磨不同的時間,所得的奈米粒子大小分佈
圖。...................................................96
圖 3-5-4 Gel粒子在光學顯微鏡下的型態。........................97
圖 3-6 不同組成比例奈米粒子,隨時間變化攪拌下的黏度變化。.....98
圖 3-7-1 IMC 在受到高溫或低溫、壓力、不同溶媒時所產生的物理化學變
化。.................................................99
圖 3-7-2 膠體奈米粒子與藥物的交互關係。.......................100
圖 3-8-1 以水為溶劑時,冷凍前後的濁度變化。...................101
圖 3-8-2 不同的乳糖(LAC)濃度下防止奈米粒子聚集的效果。........102
圖 3-8-3 不同的甘露醇(MAN)濃度下防止奈米粒子聚集的效果。......103
圖 3-8-4 不同的山梨醇(SOR)濃度下防止奈米粒子聚集的效果。......104
圖 3-9-1 乳醣(LAC)與不同情況製成的IMC粉末的電顯圖。...........105
圖 3-9-2 以-20℃冷凍後凍晶乾燥所得之Gel粒子電顯圖。...........106
圖 3-9-3 以-80℃冷凍後凍晶乾燥所得之Gel粒子電顯圖。...........107
圖 3-10 LAC與四種成品在DSC下的熱流量表現。...................108
圖 3-12-1 Gel粒子凍乾前後加水還原時的濁度變化。...............109
圖 3-12-2 成品(1)~(4)俯視觀察的凍晶乾燥粉體。.................109
圖 3-12-3 圖3-12-2中(1)~(4)加入200ml水後的還原情況。..........110
1.Speiser P. Controlled release of drugs form microcapaules and nanocapsules. Acta Pharm suecica. 1979; 13: 35.
2.Kreuter J, Speiser P. New adjuvants on a polymethacrylate base. Infect Immunity. 1979; 13: 204-210.
3.Anna M W, Suneela P, William H. Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute. J of Pharmaceutics and Biopharmaceutics. 2006; 64: 1-8.
4.Jayant K, Tamara M. Polymer–drug conjugates: Progress in polymeric prodrugs. Progress in Polymer Science . 2006; 31: 359-397.
5.L. Michael P, Bruce B, Joseph T D, Albert A C. Novel drug-delivery systems for hypertension. The American J of Medicine. 1992; 93: S45-S55.
6.Gref R, Minamitake Y, Peracchia M T, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994; 263: 1600-1603.
7.Barratt G M. Therapeutic applications of colloidal drug carriers. Pharmaceutical science & technology today. 2000; 5: 163-171.
8.Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticle system. Advanced drug delivery reviews. 2001; 44: 55-64.
9.Stenekes R J H, Loebis A E, Fernandes C M, Crommelin D J A, Hennick W E. Controlled release of liposomes from biodegradable dextran microspheres: A novel delivery concept. Pharmacology Research. 2000; 17: 690-695.
10.Kriwet B, Walter E, Kissel T. Synthesis of bioadhensive poly(acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates. J Control Reeasel. 1998; 56: 149-158.
11.Brasseur F, Couvreur P, Kante B, Deckers-passau L, Roland M, Deckers C, Speiser P. Actinomycin D adsorbed on polymethylcyanoacrylate nanoparticles: increased efficiency against an experimental tumor. European J of Cancer. 1980; 16: 1441-1445.
12.Couvreur P, Kante B, Roland M, Guiot P, Bauduin P. Polycyanoacrylate nanoparticles as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmacol. 1979; 31:331-332.
13.Couvreur P, Kante B, Grislain L, Roland M, Speiser P. Toxicity of polyalkylcyanoacrylate nanoparticles Ⅱ: Doxorubicin-loaded nanoparticles. J Pharm Scencei. 1982; 71(7): 790-792.
14.Tulkens P, Trouet A. The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rabbit flbroblasts. Biochem Pharmacol. 1987; 27: 415-424.
15.Cohen H, Levy R J, Gao J, Fishbein I, Kousaev V, Sosnowski S. Slomkoski S, Golomb G. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene therapy. 2000; 7: 1896-1905.
16. Calvo P, Sanchez A, Martinez J, Lopez M I, Calonge M, Pastor J C, Alonso M J. Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharmacology Research. 1996; 13(2): 311-315.
17.Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet J P. Nanocapsules as carriers for oral peptide delivery. J Control Reeasel. 1990; 13: 233-239.
18.Watnasirichaikul S, Davies N M, Rades T, Tucker I G. Preparation of biodegradable insulin nanoparticles from biocompatible microemulsions. Pharm Res. 2000; 17(6): 684-689.
19.Anne d R, Virginie F, Marie G, Yves-Jacques S, Véronique P. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J of Controlled Release. Available online. 2006; 23.
20.Robert C R, Simone C N, Christopher W P, et al. Effective nasal influenza vaccine delivery using chitosan. Vaccine. 2005 ; 23; 4367-4374.
21.Tsutomu Y, Yuichiro O, Eiji S, Yasuhiko T, Hideya K. Intraocular sustained drug delivery using implantable polymeric devices. Advanced Drug Delivery Reviews. 2005; 57: 2033-2046.
22.Yue Y, San-ming L, Feng-kui M, Da-fang Z. Investigation of microemulsion system for transdermal delivery of meloxicam. International J of Pharmaceutics. 2006; 321: 117-123.
23.Jörg K. Nanoparticle-based dmg delivery systems. J of Controlled Release. 1991; 16: 169-176.
24.Richard C O. Solid colloidal drug delivery systems: Nanoparticles. International J of Pharmaceutics. 1981; 8: 217-234.
25.Blum R H, Carter S K. Adriamycin: a new anticancer drug with significant clinical activity. Ann Inter Med. 1974; 80: 249-259.
26.Marion H M, Oudshoorn, Robert R, Joke A B, Wim E H. Synthesis and characterization of hyperbranched polyglycerol hydrogels. Biomaterials. 2006; 27: 5471-5479.
27.Woo S S, Jong-Ho K, Hungkyu P, Kwangmeyung K, Ick C K, Doo S L. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(ε-caprolactone- co-lactide)–poly(ethylene glycol)–poly(ε-caprolactone-co-lactide) block copolymer.Biomaterials. 2006; 27; 5178-5185.
28.Meera G, T. Emilia A. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan. J of Controlled Release. 2006; 114: 1-14.
29.Tatsuya O, Shigeru K, Tadahiro M, Takuro N, Fumiyoshi Y, Mitsuru H. Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. J of Controlled Release. 2006; 114: 69-77.
30.Umesh G, Hrushikesh B A, Abhay A, Narendra K J. A review of in vitro–in vivo investigations on dendrimers: the novel nanoscopic drug carriers. Nanomedicin. 2006; 2: 66-73.
31.Silva-Cunha A, Cheron M, Grossiord J.L, Puisieux F, Seiller, M. W/O/W multiple emulsions of insulin containing a protease inhibitor and an absorption enhancer: biological activity after oral administration to normal and diabetic rats. International J of Pharmaceutics. 1998; 169: 33-44.
32.王國華。多重相乳化油性質及其引擎特性研究。國立台灣海洋大學航運技術研究所碩士學位論文。2001:六月。
33.Hour T P, Schulman J H. Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature. 1943; 152: 102-103.
34.Danielsson I, Lindman B. The definition of microemulsion. Colloid. Surfaces. 1981; 13: 391.
35.Aoudia M, Al-Shaaili M M. Solubilization of naphthalene and pyrene by sodium dodecyl sulfate (SDS) and polyoxyethylenesorbitan monooleate (Tween 80) mixed micelles. Colloids and Surfaces. 2006; 287: 44-50.
36.Walter A H, Derek D D, Andrew R H, Sumith A K, Pilip S L. Synthesis and activity of a folate peptide camptothecin prodrug. Bioorganic & Medicinal Chemistry Letters. Available online. 2006.
37.Sekiguchi K, Obi N. Studies on absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull. 1961; 9: 866-872.
38.Guy V d M, Ilse W, Thomas D R, Norbert B. Evaluation of Inutec SP1 as a new carrier in the formulation of solid dispersions for poorly soluble drugs. International J of Pharmaceutics. 2006; 316: 1-6.
39.Duckworth M, Yarphe W. Preparation of agarose by fractionation from the spectrum of polysaccharides in agar. Analytical Biochemistry. 1971; 44: 636-641.
40.Stellan H. Some new methods for the preparation of agarose. Jl of Chromatography A. 1971; 61: 73-80.
41.Hisashi S, Yoshinori S, Tohru S, Keiichi K. Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J of Bioscience and Bioengineering. 2003; 95: 328-334.
42.Hart F, Boardman P. Indomethacin: A new non-steroid anti-inflammatory agent. Br Med J: 1963: 5363 ; 965-970.
43.中華藥典。行政院衛生署。第四版。428-430。
44.U.S.P. XXI. The United State Pharmacopeial Covention Inc. 1985:705-707.
45.Katsuhiko M, Sachio T, Hiroyuki K, et al. Solid-state 13C NMR study of indomethacin polymorphism. International J of Pharmaceutics. 2006: 318; 146-153.
46.Hirofumi T, Shinsuke N, Hiromitsu Y, Yoshiaki K. Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. International J of Pharmaceutics. 2005: 293; 155-164.
47.Helan K, Mosholder A, Lu S. Lithium interaction with the cyclooxygenase 2 inhibitors rofecoxib and celecoxib and other nonsteroidal anti-inflammatory drugs. J Clin Psychiatry. 2003; 64(11): 1328-1334.
48.Cherzer P, Wald H, Rubinger D, Popovtzer M. Indomethacin and sodium retention in the rat: role of inhibition of prostaglandin E2 synthesis. Clin Science. 1992: 83; 307-311.
49.Ragheb M. The clinical significance of lithium-nonsteroidal anti-inflammatory drug interactions. J Clin Psychopharmacol. 1990: 10; 350-354.
50.Lum G, Aisenbrey G, Dunn M, Berl T, Schrier R, McDonald K. In vivo effect of indomethacin to potentiate the renal medullary cyclic AMP response to vasopressin. J Clin Invest . 1977: 59: 8-13.
51.Akbarpour F, Afrasiabi A, Vaziri N. Severe hyperkalemia caused by indomethacin and potassium supplementation. South Medicine J. 1985: 78; 756-757.
Ferreira S, Moncada S, Vane J. Indomethacin and aspirin abolish prostaglandin release from the spleen. Nat New Biol. 1971: 231(25); 237-239.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top