跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡曉雲
研究生(外文):Hsiao-Yun Hu
論文名稱:以植生復育受芘污染土壤之研究
論文名稱(外文):Studies on the Phytoremediation of Pyrene Contaminated Soils
指導教授:張簡水紋,王敏昭
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:環境工程與管理系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:149
中文關鍵詞:Pyrene多環芳香烴化合物植物復育土壤污染
外文關鍵詞:PyrenePhytoremediationsoil pollutionPolycyclic Aromatic Hydrocarbons
相關次數:
  • 被引用被引用:6
  • 點閱點閱:522
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:1
土壤中受多環芳香烴化合物(Polycyclic Aromatic Hydrocarbons, PAHs)污染問題已愈受重視,PAHs已被證實超過數百種衍生物具有致癌性及致突變性。目前對於土壤中PAHs之整治處理常以物化萃取方式,而物化方法只能對各相間轉換,後續仍需進ㄧ步以其他技術處理,而且還可能破壞當地生態資源,近年來研究發現利用植物復育可原地修復受有機物污染之土壤。本研究以台灣農耕面積最大之紅壤與沖積土,石英砂作為對照組,以Pyrene為代表污染物,利用盆栽試驗種植紫百慕達草與花苜蓿,在不同濃度之Pyrene污染土壤中,分別添加5%培養土,測試百慕達草與紫花苜蓿對土壤中Pyrene之降解效果。結果顯示添加5%培養土於Pyrene濃度為100 mg kg-1、200 mg kg-1、300 mg kg-1、400 mg kg-1、500 mg kg-1之污染石英砂中,紫花苜蓿對Pyrene降解率分別為73.3%、58.1%、49.6%、37.7%、30.6%,而添加5%培養土於Pyrene濃度為50 mg kg-1、100 mg kg-1、150 mg kg-1、200 mg kg-1之污染石英砂中Pyrene降解率分別為74.7%、65.7%、57.2%、51.7%,結果顯示紫花苜蓿對50 mg kg-1Pyrene污染土壤之降解率可達74.7%,因此建議若以百慕達草與紫花苜蓿植生復育處理受Pyrene污染土壤,其土壤添加5%培養土可有效提升污染物之降解效果。
Polycyclic Aromatic the Hydrocarbons contamination concern has received takes seriously, PAHs was confirmed that surpasses several hundred derivatives has the carcinogenicity and causes the sudden change. At present improvement of processing PAHs often transforms into regarding the soil in the extract way, but transforms into the method to be able only to each interaction transformation, Following still needed - step by other technical processing, moreover also possibly destroys the local ecology resources. In recent years studied the discovery use plant cicada chrysalis to be possible in-situ repair soil of the organic matter pollution. In this study, as supply take alluvial soils and red soils was used for experiment which are the main category soil for farming in Taiwan, the quartz sand take the control group, and Pyrene was spiked into soils to simulate the contaminated soils, the use pot experiment planter Bermuda grass and Medicago sativa. Pyrene of contaminated soil in the different density, increases 5% raise earth separately, the test Bermuda grass and Medicago sativa to the soil in degeneration of effect the Pyrene. The result showed that increases 5% raise earth in the Pyrene density is 100 mg kg-1,200 mg kg-1,300 mg kg-1,400 mg kg-1, of contaminated quartz sand in 500 mg kg-1, the Medicago sativa to the Pyrene degeneration rate respectively is 73.3%, 58.1%, 49.7%, 37.7%, 30.6%. But increases 5% raise earth in the Pyrene density is 50 mg kg-1,100 mg kg-1,150 mg kg-1, of contaminated quartz sand in 200 mg kg-1 the Pyrene degeneration rate respectively is 74.7%, 65.7%, 57.2%, 51.7%. The result showed that contaminated quartz sand in 50 mg kg-1, the Medicago sativa to the Pyrene degeneration rate respectively is 74.7%, Therefore if the suggestion plants by the Bermuda grass and Medicago sativa lives cicada chrysalis processing the Pyrene contaminated soil, its soil increases 5% raise earth to be possible to promote degeneration of effect effectively the pollutant.
目錄
中文摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 多環芳香烴碳氫化合物於環境中來源與植物復育機制 1
ㄧ、多環芳香烴碳氫化合物於環境中來源與特性 1
二、多環芳香烴碳氫化合物於環境中分佈 5
三、植物對多環芳香烴碳氫化合物之修復機制 7
參考文獻 12
第二章 百慕達草對Pyrene之降解效應 20
ㄧ、前言 20
二、前人研究 21
三、材料與方法 24
3.1試驗材料 24
3.2試驗方法 30
四、結果與討論 36
4.1百慕達草對Pyrene降解率 36
4.2百慕達草在三種土壤中降解率比較 43
4.3百慕達草之生育調查 46
五、結論與建議 49
參考文獻 50
第三章 紫花苜蓿對Pyrene之降解效應 53
ㄧ、前言 53
二、前人研究 54
三、材料與方法 55
3.1試驗材料 55
3.2試驗方法 57
四、 結果與討論 61
4.1紫花苜蓿對Pyrene降解率 61
4.2紫花苜蓿在三種土壤中降解率比較 67
4.3紫花苜蓿之生育調查 69
五、結論與建議 72
參考文獻 73
第四章 百慕達草與紫花苜蓿對Pyrene之降解效應 76
ㄧ、前言 76
二、前人研究 77
三、材料與方法 78
3.1試驗材料 78
3.2試驗方法 80
四、結果與討論 85
4.1百慕達草與紫花苜蓿對Pyrene降解率 85
4.2百慕達草與紫花苜蓿在三種土壤中降解率比較 91
4.3百慕達草與紫花苜蓿之生育調查 94
4.4傅立葉轉換紅外線光譜分析 98
4.5 固態核磁共振圖譜分析(solid state high resolution 13C nuclear magnetic resonance with cross polarization and magic angle spinning, solid-state 13C CPMAS-NMR) 120
五、結論與建議 141
參考文獻 142
附錄 146

表目錄
表1-1 有機物揮發性分類表 2
表1-2 美國環保署優先評估PAHs之分子式及其致癌性 3
表2-1 供試土壤之理化性質 25
表2-2 Pyrene之特性 26
表2-3 研究中所使用之儀器廠牌與型號 28
表2-4 研究中所使用之材料與藥品 29
表2-5 高效能液相層析儀分析條件 34
表2-6 百慕達草在三種土壤中降解率(第一次盆栽試驗) 39
表2-7 百慕達草在三種土壤中降解率(第二次盆栽試驗) 42
表2-8 百慕達草在三種土壤中單位面積植株鮮重(第一次盆栽試驗) 48
表2-9 百慕達草在三種土壤中單位面積植株鮮重(第二次盆栽試驗) 48
表3-1 紫花苜蓿在三種土壤中降解率(第一次盆栽試驗) 63
表3-2 紫花苜蓿在三種土壤中降解率(第二次盆栽試驗) 66
表3-3 第紫花苜蓿在三種土壤中單位面積植株鮮重(第一次盆栽試驗) 71
表3-4 紫花苜蓿在三種土壤中單位面積植株鮮重(第二次盆栽試驗) 71
表4-1 FT-IR 光譜主要吸收峰之鑑識 119
表4-2 CPMAS 13C NMR 化學位移分割 140

圖目錄
圖1-1 植物修復示意圖(http://www.enviro.nfesc.navy.mil/scripts/WebObjects.exe/erbweb) 11
圖2-1 pyrene之檢量線 26
圖2-2 pyrene之滯留時間 34
圖2-3 百慕達草在石英砂降解率 37
圖2-4 百慕達草在紅壤降解率 38
圖2-5 百慕達草在沖積土降解率 38
圖2-6 百慕達草在石英砂降解率 40
圖2-7 百慕達草在紅壤降解率 41
圖2-8 百慕達草在沖積土降解率 41
圖2-9 百慕達草在三種土壤中降解率(第一次盆栽試驗) 44
圖2-10 百慕達草在三種土壤中降解率(第二次盆栽試驗) 45
圖2-11 百慕達草單位面積鮮重(第一次盆栽試驗) 47
圖2-12 百慕達草單位面積鮮重(第二次盆栽試驗) 47
圖3-1 紫花苜蓿在石英砂降解率 62
圖3-2 紫花苜蓿在紅壤降解率 62
圖3-3 紫花苜蓿在沖積土降解率 63
圖3-4 紫花苜蓿在石英砂降解率 65
圖3-5 紫花苜蓿在紅壤降解率 65
圖3-6 紫花苜蓿在沖積土降解率 66
圖3-7 紫花苜蓿在三種土壤中降解率(第一次盆栽試驗) 68
圖3-8 紫花苜蓿在三種土壤中降解率(第二次盆栽試驗) 68
圖3-9 紫花苜蓿單位面積鮮重(第一次盆栽試驗) 70
圖3-10 紫花苜蓿單位面積鮮重(第二次盆栽試驗) 70
圖4-1 百慕達草與紫花苜蓿在石英砂降解率(第一次盆栽試驗) 86
圖4-2 百慕達草與紫花苜蓿在紅壤降解率(第一次盆栽試驗) 87
圖4-3 百慕達草與紫花苜蓿在沖積土降解率(第一次盆栽試驗) 87
圖4-4 百慕達草與紫花苜蓿在石英砂降解率(第二次盆栽試驗) 89
圖4-5 百慕達草與紫花苜蓿在紅壤降解率(第二次盆栽試驗) 90
圖4-6 百慕達草與紫花苜蓿在沖積土降解率(第二次盆栽試驗) 90
圖4-7 百慕達草在三種土壤中降解率(第ㄧ次盆栽試驗) 92
圖4-8 紫花苜蓿在三種土壤中降解率(第ㄧ次盆栽試驗) 92
圖4-9 百慕達草在三種土壤中降解率(第二次盆栽試驗) 93
圖4-10 紫花苜蓿在三種土壤中降解率(第二次盆栽試驗) 93
圖4-11 百慕達草與紫花苜蓿在石英砂中單位面積鮮重(第ㄧ次盆栽試驗) 95
圖4-12 百慕達草與紫花苜蓿在紅壤中單位面積鮮重(第ㄧ次盆栽試驗) 95
圖4-13 百慕達草與紫花苜蓿在沖積土中單位面積鮮重(第ㄧ次盆栽試驗) 96
圖4-14 百慕達草與紫花苜蓿在石英砂中單位面積鮮重(第二次盆栽試驗) 96
圖4-15 百慕達草與紫花苜蓿在紅壤中單位面積鮮重(第二次盆栽試驗) 97
圖4-16 百慕達草與紫花苜蓿在沖積土中單位面積鮮重(第二次盆栽試驗) 97
圖4-17 百慕達草與紫花苜蓿降解pyrene污染石英砂之傅立葉轉換紅外線光譜 101
圖4-18 百慕達草與紫花苜蓿降解pyrene污染石英砂之傅立葉轉換紅外線光譜之差分圖譜。 102
圖4-19 百慕達草與紫花苜蓿降解pyrene污染石英砂之傅立葉轉換紅外線光譜 103
圖4-20 百慕達草與紫花苜蓿降解pyrene污染石英砂之傅立葉轉換紅外線光譜之差分圖譜 104
圖4-21 百慕達草與紫花苜蓿降解pyrene污染石英砂之傅立葉轉換紅外線光譜 105
圖4-22 百慕達草與紫花苜蓿降解pyrene污染石英砂之傅立葉轉換紅外線光譜之差分圖譜 106
圖4-23 百慕達草與紫花苜蓿降解pyrene污染紅壤之傅立葉轉換紅外線光譜 107
圖4-24 百慕達草與紫花苜蓿降解pyrene污染紅壤之傅立葉轉換紅外線光譜之差分圖譜 108
圖4-25 百慕達草與紫花苜蓿降解pyrene污染紅壤之傅立葉轉換紅外線光譜 109
圖4-26 百慕達草與紫花苜蓿降解pyrene污染紅壤之傅立葉轉換紅外線光譜之差分圖譜 110
圖4-27 百慕達草與紫花苜蓿降解pyrene污染紅壤之傅立葉轉換紅外線光譜 111
圖4-28 百慕達草與紫花苜蓿降解pyrene污染紅壤之傅立葉轉換紅外線光譜之差分圖譜 112
圖4-29 百慕達草與紫花苜蓿降解pyrene污染沖積土之傅立葉轉換紅外線光譜 113
圖4-30 百慕達草與紫花苜蓿降解pyrene污染沖積土之傅立葉轉換紅外線光譜之差分圖譜 114
圖4-31 百慕達草與紫花苜蓿降解pyrene污染沖積土之傅立葉轉換紅外線光譜 115
圖4-32 百慕達草與紫花苜蓿降解pyrene污染沖積土之傅立葉轉換紅外線光譜之差分圖譜 116
圖4-33 百慕達草與紫花苜蓿降解pyrene污染沖積土之傅立葉轉換紅外線光譜 117
圖4-34 百慕達草與紫花苜蓿降解pyrene污染沖積土之傅立葉轉換紅外線光譜之差分圖譜 118
圖4-35 百慕達草與紫花苜蓿降解pyrene污染石英砂之固態核磁共振光譜光譜 122
圖4-36 百慕達草與紫花苜蓿降解pyrene污染石英砂之固態核磁共振光譜之差分圖譜 123
圖4-37 百慕達草與紫花苜蓿降解pyrene污染石英砂之固態核磁共振光譜光譜 124
圖4-38 百慕達草與紫花苜蓿降解pyrene污染石英砂之固態核磁共振光譜之差分圖譜 125
圖4-39 百慕達草與紫花苜蓿降解pyrene污染石英砂之固態核磁共振光譜光譜 126
圖4-40 百慕達草與紫花苜蓿降解pyrene污染石英砂之固態核磁共振光譜之差分圖譜 127
圖4-41 百慕達草與紫花苜蓿降解pyrene污染紅壤之固態核磁共振光譜光譜 128
圖4-42 百慕達草與紫花苜蓿降解pyrene污染紅壤之固態核磁共振光譜之差分圖譜 129
圖4-43 百慕達草與紫花苜蓿降解pyrene污染紅壤之固態核磁共振光譜光譜 130
圖4-44 百慕達草與紫花苜蓿降解pyrene污染紅壤之固態核磁共振光譜之差分圖譜 131
圖4-45 百慕達草與紫花苜蓿降解pyrene污染紅壤之固態核磁共振光譜光譜 132
圖4-46 百慕達草與紫花苜蓿降解pyrene污染紅壤之固態核磁共振光譜之差分圖譜 133
圖4-47 百慕達草與紫花苜蓿降解pyrene污染沖積土之固態核磁共振光譜光譜 134
圖4-48 百慕達草與紫花苜蓿降解pyrene污染沖積土之固態核磁共振光譜之差分圖譜 135
圖4-49 百慕達草與紫花苜蓿降解pyrene污染沖積土之固態核磁共振光譜光譜 136
圖4-50 百慕達草與紫花苜蓿降解pyrene污染沖積土之固態核磁共振光譜之差分圖譜 137
圖4-51 百慕達草與紫花苜蓿降解pyrene污染沖積土之固態核磁共振光譜光譜 138
圖4-52 百慕達草與紫花苜蓿降解pyrene污染沖積土之固態核磁共振光譜之差分圖譜 139
參考文獻
丁克強、駱永明、劉世亮,「黑麥草對菲污染土壤修復的初步研究」,土壤,第四期,第233-236頁 (2002)。
宋玉芳,「植物修復的技術內涵及展望」,安全與環境學報,第一卷,第三期,第48-53頁 (2001)。
林淵淙,「餐廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵」,國立成功大學環境工程所,臺南 (2000)。
楊柳春、鄭明輝、劉文彬,「有機污染物環境的植物研究發展修復」,第六期,第1-7頁 (2000)。
劉世亮、駱永明、丁克強、李華、吳龍華,「苯并[a]芘污染土壤的植物根際修復研究初探」,生態環境,第十六卷,第二期,第425-431 頁(2007)。
魏樹和、周啟星、張凱松,「根際圈在污染土壤復育中的作用與機理分析」,農業環境保護,第四卷,第ㄧ期,第43-147頁 (2003)。
Alcock, R.E., Bacon, R.D., Bandget, A.J., Beck, P.M., Haygarth, R.G., Lee, C.A., and Parker, K.C.J.,“Persistence and fate of polychlorinated biphenyl (PCBs) in sewage sludge-amended agricultural soils,”Environ. Pollut., Vol. 93, pp. 83-92 (1996).
Anderson, T.A., Guthrie, E.A., and Walton, B.T.,“Bioremediation in the rhizosphere,”Environ. Sci. Techno.l, Vol. 27, pp. 2630-2636 (1993).
Aprill, W.R., and Sims, C.,“Evaluation of the use of prairie grasses for satmulating polycyclic aromatic hydrocarbon treatment in soil,”Chemosphere, Vol. 20, pp. 253-265 (1990).
Burken, J.G., and Schnoor, J.L.,“Predictive relationalships for uptake of organic contminants by hybrid poplar trees,”Environ. Sci. Technol., Vol. 32, pp. 3379-3385 (1998).
Chao, H.R., Lin, T.C., and Heieh, J.H.,“Compostion and characterixtics of PAHs emissions from Taiwanese temples,”Environ. Sci. Technol., Vol. 16, pp. 4-10 (1997).
Chiou, C.T., and Schmedding, D.W.,“Partitioning of organic compounds in octanol-water systems,”Environ. Sci. Technol., Vol. 16, pp. 4-10 (1982).
Cotham, W.E., and Bidleman, T.F.,“Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Air at an Urban and a Rural Site near Lake Michigan,”Environ. Sci. Technol., Vol. 229, pp. 2782-2789 (1995).
Cunningham, S.D., Anderson, T.A., Schwab, A.P., and Hsu, F.C., “Phytoremediation of soils contaminated with organic pollutants,” Adv. Agron., Vol. 56, pp. 55-114 (1996).
Daisey, J.M., Hodgson, A.T., Fisk, W.J., and Brinke, J.T.,“Volatile organic compounds in twelve california office building; classes, concert rations and sources,”Atmos. Environ., Vol. 28, pp. 3557-3562 (1994).
Daniel, R.O., John, R., and Ross, M.,“Polycyclic aromatic hydrocarbons in San Francisco Estuary sediments,”Mar. Chem., Vol. 86, pp. 169-184 (2004).
Daniele, F., Ivano, V., Sun, C.G., Colin, E., Snape, C.M., and Anthony, E.F.,“Source apportionment of polycyclic aromatic hydrocarbons in a coastal lagoon molecular and isotopic characterization,”Mar. Chem., Vol. 84, pp. 123-35 (2004).
Edwards, N.T.,“Polycyclic aromatic hydrocarbons(PAHs) in the terrestrial environment-a review,”J. Envviron. Qual, Vol. 12, pp. 427-441 (1983).
Ferro, A.M., Sims, R.C., and Bugbee, B.,“Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil,”J. Environ. Qual., Vol. 23, pp. 272-279 (1994).
Freeman, D.J., and Cattell, F.C.R.,“Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons,”Environ. Sci. Technol., Vol. 24, pp.1581-5 (1990).
Futoma, D.J., Smith, S.R., Smith, T.E., and Tanaka, J.,“The analysis of polycyclic aromatic hydrocarbons in water system,”CRC Press, Florida (1981).
Fujikawa, K., Fort, F.L., Samejima, K., and Sakamoto, Y.,“Genotoxic potency in Drosophila melanogaster of selected aromatic amines and polycylic aromatic hydrocarbons as assayed in the DNA repair test,”Mutat. Res., Vol. 290, pp. 175-82 (1993).
Gao, J., Carrison, A.W., Hoehamer, C., Mazur, C.S., and Wolfe, N.L.,“Uptake and phytotransformation of o,p′-DDT and p,p′-DDT by axenically cultivated aquaticplants,”J. Agric. Food Chem., Vol. 48, pp. 6121-6127 (2000).
Harrison, M.R., Smith, D.J., and Luhana, L.,“Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham,”U.K. Environ. Sci. Technol., Vol. 30, pp. 825-832 (1996).
Henner, P., Schiavon, M., Morel, J.L., and Lichtfouse, E.,“Polycyclic Aromatic Hydrocarbon(PAHs) Occurrence and Remediation Methods,”Analusis Mag., Vol.25, No. 9-10, pp. 56-58 (1997).
Holbrook, R.D., Love, N.G., and Novak, J.T.,“Investigation of sorption behavior between pyrene and colloidal organic carbon from activated sludge processes,”Environ. Sci. Technol., Vol. 38, pp. 4987-4994 (2004).
Hwang, H.M., Wade, T.L., and Sericano, J.L.,“Concentration and source characterization of polycyclic aromatic hydrocarbons in pine needles from Kroea, Mexico, and United States,”Atmos. Environ., Vol. 37, pp. 2259-2267 (2003).
Jian, Y., Wnag, L., Peter, P.F., and Yu, H.T.,“Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list, Mutat. Res.,”Vol. 557, pp. 99-108 (2004).
Ke, L., Wong, W.Q., Wong, T.W.Y., Wong,Y.S., and Tam, N.F.Y.,“Removal of pyrene from contaminated sediments by mangrove microcosms,”Chemosphere, Vol. 51, pp. 25-34 (2003).
Krishnan, G., Horst, G.L., Darnell, S., and Powers, W.L.,“Growth and development of smooth bromegrass and tall fescue in TNT-contaminated soil,”Environ. Pollut., Vol. 107, pp. 109-116 (2000).
Kruger, E.L., Anhalt, J.C., and Sorenson, D.,“Atrazine degradation in pesticide contanminated soils, Phytoremediation of soils and water contaminants,”American Chemical Society, pp. 54-64 (1997).
Liste, H.H., and Alexander, M.,“Plant-promoted pyrene degradation in soil,”Chemosphere, Vol. 38, pp. 7-10 (2000).
Liste, H.H., and Alexander, M.,“Accumulation of phenanthrene and pyrene in rhizosphere soil,”Chemosphere, Vol. 40, pp. 11-14 (2000).
Macek, T., Macková, M., and Ká, J.,“Exploitation of plants for the removal of organics in environmental remediation,”Biotechnol. Adv., Vol. 18, pp. 23-34 (2002).
Miller, M.M., Wasik, S.P., Huang, G.L., Shiu, W.Y., and Mackay, D.,“Ralationships between octanol-water partition coefficient and aqueous solubility,”Environ. Sci. Technol., Vol. 19, pp. 522-529 (1985).
Morehead, N.R., Eadie, B.J., Lake, B., Landrum, P.D., and Berner, D.,“The sorption of PAH onto dissolved organic matter in Lake Michigan waters,”Chemosphere, Vol. 15, pp. 403-12 (1986).
Maillacheruvu, K., and Safaai, S.,“Naphthalene removal from aqueous systems by Sagittarius,”J. Environ. Sci. Health., Vol. 37, No. 5, pp. 845-861 (2002).
Nylund, L., Heikkila, P., Hameila, M.P.L., Linnainmaa, K., and Sorsa, M., “Genotoxic effects and chemical composition of four creosotes,” Mutat. Res., Vol. 265, pp. 223-36 (1992).
Rezek, J., in der Wiesche, C., Mackova M., Zadrazil, F., and Macek, T.,“The effect of ryegress (Lolium perenne) on decrease of PAH content in long term contaminated soil,” Chemosphere, Vol. 70, pp. 1603-1608 (2008).
Richter, H., and Howard, J.B.,“Formation of polycyclic aromatic hydrocarbons and their growth to soot a review of chemical reaction pathways,”Prog. Energy and Combust. Sci., Vol. 26, pp. 565-608 (2000).
Ribes, A., Grimalt, J.O., and Garcia, C.J.T.,“Polycyclic aromatic hydrocarbons in mountain soils of the subtropical Atliantic,”J. Environ. Qual., Vol. 32, pp. 977-987 (2003).
Miya, R.K., and Firestones, M.K.,“Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual gress, ”J. Environ. Qual., Vol. 29, pp. 584-592 (2000).
Santella, R.M., Gammon, M.D., Zhang, Y.J., Motykiewicz, G., Young, T.L., Hayes, S.C., Terry, M.B., Schoenberg, J.B., Brinton, L.A., Bose, S., Teitelbaum, S.L., and Hibshoosh, H.,“Immunohistochemical analysis of polycyclic aromatic hydrocarbon-DNA adducts in breast tumor tissue,”Cancer Lett., Vol. 154, pp. 143-149 (2000).
Slaski, J.J., Archambault, D.J., and Li, X.,“Evaluation of polycyclic aromatic hydrocarbon (PAHs) accumulation in plants. The potential use of PAH accumulation as a marker of exposure to air emissions from oil and gas flares,”ISBN 0-7785-1228-2. Report prepared for the Air Research Users Group, Alberta Environment, Edmonton, Alberta (2000).
Simonich, S.L., and Hites, R.A.,“Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere,”Nature, Vol. 370, pp. 49-51 (1994).
Smith, D.J.T., and Harrison, R.M.,“Polycyclic aromatic hydrocarbons in atmospheric particles,” In Atmospheric Particles. Edited by: Harrison RM and Van Grieken R. Chichester, John Wiley & Sons Ltd., pp. 253-294 (1998).
Voice, T.C., Rice, C.P., and Weber, W.J.,“Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems,”Environ. Sci. Technol., Vol. 17, pp. 513-518 (1983).
Wong, M.H.,“Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils,”Chemosphere, Vol. 50, pp. 775-78 (2003).
Wild, S.R., and Jones, K.C.,“Polycyclic aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget, ”Environ. Pollut., Vol. 88, pp. 91-108 (1995).
Yang, S.Y.N., Connell, D.W., Hawker, D.W., and Kayal, S.I.,“Polycyclic aromatic hydrocarbons in air, soil and vegetation in the vicinity of an urban roadway,”Environ. Sci. Technol., Vol. 102, pp. 229-240 (1991).
Yoshitomi, K.J., and Shann, J.R.,“Corn(Zea may L) root exudates and their impact on 14C-pyrene minerdization,”Soil Biol. Biochem., Vol. 33, pp. 769-776 (2001).
Zandere, M.,“Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons,”in: A. Bjorseth (Ed.), Handbook of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, New York, pp. 1-25 (1983).
王傳新,「作物需肥診斷技術-鮑氏土壤機械法」,台灣省農試所特刊,第十三期,第27-29頁 (1981)。
宋玉芳、許華夏、任麗萍,「土壤中石油及降解組分菲、芘的植物復育調控研究」,應用生態學報,第十一期,第91-94頁 (2000)。
洪崑煌,「土壤化學」,立編譯館,第219頁 (1996)。
劉世亮、駱永明、丁克強、李華、吳龍華,「苯并[a]芘污染土壤的植物根際修復研究初探」,生態環境,第十六卷,第二期,第425-431頁 (2007)。
謝兆申、王明果,「台灣土壤」,中興大學土壤調查試驗中心,第128-130頁 (1989)。
Betts, K.S.,“Technology update THP soil cleanup aided by ground cover,”Environ. Sci. Technol., Vol. 31, pp. 214 (1997).
Camargo, M.C.R., and Camargo, M.C.F.,“Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits,”Food Control, Vol. 14, pp. 49-53 (2003).
Conte, P., Zena, A., Pilidis, G., and Piccolo, A.,“Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances,”Environ. Pollut., Vol. 112, pp. 27-31 (2001).
Davis, L.C., Castro-Diaz, S., Zhang, Q., and Erickson, L.E.,“Benefits of vegetaation for soils with organic contaminants,”Crit. Rev. Plant Sci., Vol. 21, pp. 457-491 (2002).
Escalante-Espinosa, E., Gallegos-Martinez, M.E., Favela-Torres, E., and Gutierrez-Rojas, M.,“Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system,”Chemosphere, Vol. 59, No. 3, pp. 405-13 (2004).
Hur, J., and Mark, A.,“Schlautman, Influence of Humic Substance Adsorptive Fractionation on Pyrene Partitioning to Dissolved and Mineral-Associated Humic Substances,”Environ. Sci. Technol., Vol. 38, pp. 5871-5877 (2004).
Liste, H.H., and Alexander, M.,“Plant-promoted pyrene degradation in soil, Chemosphere,”Vol. 70, pp. 1603-1608 (2002).
McLean, E.O.,“Soil pH and lime requirement, Methods of soil analysis,” Part 2: Chemical and microbiological properties, Page A. L. et al. (eds.), Second edition.Madison, WI, USA, Agronomy Monograph, Vol. 9, pp. 199-224 (1982).
Nieman, J.K.C., Sims, R.C., Sims, J.L., Sorensen, D.L., Mclean, J.E., and Rice, J.A.,“[14C] Pyrene Bound Residue Evaluation Using MIBK Fractionation Method for Creosote-Contaminated Soil,”Environ. Sci. Technol., Vol. 33, pp. 776-781 (1999).
Rezek, J., in der Wiesche, C., Mackova M., Zadrazil, F., and Macek, T.,“The effect of ryegress (Lolium perenne) on decrease of PAH content in long term contaminated soil,”Chemosphere, Vol. 70, pp. 1603-1608 (2008).
Rhoades, J. D., Soluble salts, Methods of soil analysis, (Page, A. L., Miller, R. H., and Keeney, D. R. eds.), Part2. 2nd ed, Agronomy Monogaphy 9, ASA and SSSA. Madision, Wisconsin, pp.167-179 (1982).
Rhoades, J. D., Cation exchange capacity, Methods of soil analysis, ( Page, A. L., Miller, R. H., and Keeney, D. R. eds.), Part2. 2nd ed, Agronomy Monogaphy 9, ASA and SSSA. Madision, Wisconsin, pp.149-157 (1982).
Ruckdeschel, G., and Renner, G.,“Effects of pentachlorophenol and some of its known and possible metabolites on different species of bacteria,”Appl. Enviro. Microb., Vol. 53, No. 11, pp. 2689-2692 (1987).
Sung, K., Munster, C.L., Rhykerd, R., Drew, M.C., and Yavuz C.M.,“The use of box lysimeters with freshly contaminated soils to study the phytoremediation of recalcitrant organic contaminants,”Environ. Sc.i Technol., Vol. 36, No. 10, pp. 2249-55 (2002).
Tiessen, H., Bettany, J.R., and Stewart, J.W.B.,“An improved method for the determination of carbon in soils and soil extracts by dry combustion,”Commun. Soil Sci. Plant Anal., Vol. 12, pp. 211-218 (1981).
van der Sloot, H.A.,“Leaching behavior of waste and stabilized waste materials; Characterization for environmental assessment purpose,”Waste Manage. Res., Vol. 8, No. 33, pp. 215-228 (1990).
White, J.C., Parrish, Z.D., Isleyen, M., Gent, M.P., Iannucci-Berge, W., Eitzer, B.D., and Mattina, M.I.,“Influence of nutrient amendments on the phytoextraction of weathered 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene by cucurbits,”Environ. Toxicol. Chem., Vol. 24, No.4, pp. 987-94 (2005).
丁克強、駱永明、劉世亮,「黑麥草對菲污染土壤修復的初步研究」,土壤,第四卷,第233-236頁 (2002)。
王傳新,「作物需肥診斷技術-鮑氏土壤機械法」,台灣省農試所特刊,第十三期,第27-29頁 (1981)。
孫鐵珩、宋玉芳、許華夏,「植物法生物修復PAHs和礦物油污染土壤的調控研究」,應用生態學報,第十卷,第二期,第225-229頁 (1999)。
萬寅婧、占新華、周立祥,「土壤中芘、菲、萘、苯對小麥的生態毒性影響」,中國環境報,第二十五卷,第五期,第563-566頁 (2005)。
Alcock, R.E., Bacon, R.D., Bandget, A.J., Beck, P.M., Haygarth, R.G., Lee, C.A., and Parker, K.C.J.,“Persistence and fate of polychlorinated biphenyl (PCBs) in sewage sludge-amended agricultural soils,”Environ. Pollut., Vol. 93, pp. 83-92 (1996).
Campanella, B.F., Bock, C., and Schroder, P.,“Phytoremediation to increase the degradation of PCBs and PCDD/Fs. Potential and limitations,”Environ. Sci. Pollut. R., Vol. 9, No. 1, pp. 73-85 (2002).
Clinton, B.D., Vose, J.M., Vroblesky, D.A., and Harvey, G.J.,“Determination of the relative uptake of ground vs. surface water by Populus deltoides during phytoremediation,”J. Phytoremediation, Vol. 6, No. 3, pp. 239-52 (2004).
Colborn, T.F.S., and Saal, A.M.S.,“Developmental effects ofendocrine-distrupting chemicals in wildlife and humans,”Environ. Health Persp., Vol. 101, pp. 378-384 (1993).
Ghosh, U., Gillette, J.S., Luthy, R.G., and Zare, R.N.,“Microscale location, characterization, and association of polycyclic aromatic hydrocarbons on harbor sediment particles,”Environ. Sci. Technol., Vol. 34, pp. 1729-1736 (2000).
Kylin, H.H.J., Ballach, H., and Wittig, R.,“Environmental monitoring ofpolychlorinated biphenyls using pine needles as passive samples,”Environ. Sci. Technol., Vol. 28, pp. 1320-1324 (1994).
McLean, E.O.,“Soil pH and lime requirement, Methods of soil analysis,” Part 2: Chemical and microbiological properties, Page A. L. et al. (eds.), Second edition.Madison, WI, USA, Agronomy Monograph, Vol. 9, pp. 199-224 (1982).
Pradhan, S.P., Conrad, J.R., Paterek, J.R., and Srivastava, V.J.,“Potential of phoytoremediation for treatment of PAHs in soil at MGP sites,”J. Soil Contam., Vol. 7, pp. 467-480 (1998).
Rhoades, J. D., Soluble salts, Methods of soil analysis, (Page, A. L., Miller, R. H., and Keeney, D. R. eds.), Part2. 2nd ed, Agronomy Monogaphy 9, ASA and SSSA. Madision, Wisconsin, pp.167-179 (1982).
Rhoades, J. D., Cation exchange capacity, Methods of soil analysis, ( Page, A. L., Miller, R. H., and Keeney, D. R. eds.), Part2. 2nd ed, Agronomy Monogaphy 9, ASA and SSSA. Madision, Wisconsin, pp.149-157 (1982).
Tiessen, H., Bettany, J.R., and Stewart, J.W.B.,“An improved method for the determination of carbon in soils and soil extracts by dry combustion,”Commun. Soil Sci. Plant Anal., Vol. 12, pp. 211-218 (1981).
Schwab, A.P., Al-Assi, A.A., and Banks, M.K.,“Adsorption of naphthalene onto plant roots,”J. Environ. Qual., Vol. 27, pp. 220-224 (1998).
Sridhar, S., Victor, F.M., and Steven, C.M.,“Phytomediation:An ecological solution to organic chemical contamination,”Ecol. Eng., Vol. 18, pp. 647-658 (1999).
Wetzel, S.C., Banks, M.K., and Schwab, A,P., Rhizosphere effects on the degradation of pyrene and anthracene, Phytoremediation of Soil and Water Contaminants, Amer. Che.l Soc. Symposium Series, Washington, pp. 254-262 (1997).
王傳新,「作物需肥診斷技術-鮑氏土壤機械法」,台灣省農試所特刊,第十三期,第27-29頁 (1981)。
宋玉芳、常士俊、李利,「污灌土壤中多環芳香烴的積累與動態變化的研究」,應用生態學報,第八卷,第ㄧ期,第93-98頁 (1997)。
Binet, P., Portal, J.M., and Leyval, C.,“Dissipation of 3~6 rimg polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass,”Soli Biol. Biochem., Vol. 32, pp. 2011-2017 (2000).
Chaudhry, G. R.,“Biological degradation and bioremediation of toxic chemicals Portland,”Oregon:Dioscorides, pp. 7-17 (1994).
Chefetz, B., Deshmukh, A.P., Hatcher, P.G., and Guthrie, E.A.,“Pyrene Sorption by Natural Organic Matter,”Environ. Sci. Technol., Vol. 34, pp. 2925-2930 (2000).
Chen, Y.C., and Banks, M.K.,“Bacterial community evaluation during establishment of tall fescue (Festuca arundinacea)in soil contaminated with pyrene,”J. Phytoremediation, Vol. 6, No. 3, pp. 227-38 (2004).
Gao, Y.Z., Zhu, L.Z., and Hu, C.J.,“Effect of Tween 80 on plant uptake phenanthrene and pyrene from water,”Acta. Scientiae Circumstantial, Vol. 24, pp. 714-718 (2004).
Gao, Y.Z., Ling, W.T., and Zhu, L.Z.,“Ryegrass-accelerated degradation of polycyclic aromatic hydrocarbons in soil,”J. Agro. Environ. Sci. Technol., Vol. 24, pp. 498-502 (2005).
Huang, X.D., El-Alawi, Y., Penrose, D.M., Glick, B.R., and Greenberg, B.M.,“A multi-process phytormediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils,”Environ. Pollut., Vol. 130, No. 3, pp. 465-76 (2004).
Lobartini, J.C., and Tan, K.H.,“Difference in humic acids characteristics as determined by carbon-13 nuclear magnetic resonance, scanning electron microscopy, and infrared analysis,”Soil Sci. Society Am. J., Vol. 52, pp. 125-130 (1998).
McLean, E.O.,“Soil pH and lime requirement, Methods of soil analysis,” Part 2: Chemical and microbiological properties, Page A. L. et al. (eds.), Second edition.Madison, WI, USA, Agronomy Monograph, Vol. 9, pp. 199-224 (1982).
Nieman, J.K.C., Sims, R.C., Sims, J.L., Sorensen, D.L., Mclean, J.E., and Rice, J.A.,“[14C] Pyrene Bound Residue Evaluation Using MIBK Fractionation Method for Creosote-Contaminated Soil,”Environ. Sci. Technol., Vol. 33, pp. 776-781 (1999).
Parrish, Z.D., Banks, M.K., and Schwab, A.P.,“Effect of root death and decay on dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of yellow sweet clover and tall fescue,”J. Environ. Qual., Vol. 34, pp. 207-16 (2005).
Perez, M.G., Martin-Neto, L., Saab, S.C., Novotny, E.H., Milori, D.M., Bagnato, S.V., Colnago, L.A., Melo, W.J., and Knicker, H.,“Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy,”Geoderma, Vol. 11, pp. 181-190 (2004).
Perminova, I.V., Gerchishcheva, N.Y., and Petrosyam, V.S.,“Relationships Between Structure ans Bing affinity of humic Substance for Polycyclic Aromatic Hydrocarbons :Relevance of Molecular Descriprors,”Environ. Sci. Technol., Vol. 33, pp. 3781-3787 (1999).
Rasmussen, G., and Olsen, R.A.,“Sorption and biology removal of creosote-contaminants from groundwater in soil/sand vegetated with orchard grass (Sactylis glomerata),”Adv. Environ. Res., Vol. 8, pp. 313-327 (2004).
Rhoades, J. D., Soluble salts, Methods of soil analysis, (Page, A. L., Miller, R. H., and Keeney, D. R. eds.), Part2. 2nd ed, Agronomy Monogaphy 9, ASA and SSSA. Madision, Wisconsin, pp.167-179 (1982).
Rhoades, J. D., Cation exchange capacity, Methods of soil analysis, ( Page, A. L., Miller, R. H., and Keeney, D. R. eds.), Part2. 2nd ed, Agronomy Monogaphy 9, ASA and SSSA. Madision, Wisconsin, pp.149-157 (1982).
Richnow, H.H., Seifert, R., Hefter, J., Kastner, M., Mahro, B., and Michaelis, W.,“Metabolites of xenobiotica and mineral oil constituents linjed to macromolecular organic matter in polluted environments,”Org. Geochem., Vol. 22, pp. 671-681 (1994).
Steveson, F.J.,“Humus Chemistry:Genesis, Composition, Reactions,(2eds.),”John Wiley & Sons, New York. (1994).
Tan, K.H.,“Environmental soil science,”Marcel Dekker, New York, (1994).
Tan, K.H.,“Humic Matter in Soil and the Environment: Principles and Controversies,”Marcel Dekker, Inc., New York, pp. 386 (2003).
Tiessen, H., Bettany, J.R., and Stewart, J.W.B.,“An improved method for the determination of carbon in soils and soil extracts by dry combustion,”Commun. Soil Sci. Plant Anal., Vol. 12, pp. 211-218 (1981).
Zhu, Y.Z.L., and Gao, Y.Z.,“Prediction of phenanthrene uptake by plants with a partition-limited modle,”Environ. Pollut., Vol. 131, pp. 505-508 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊