資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
(216.73.216.103) 您好!臺灣時間:2026/01/16 09:51
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
南林虎
研究生(外文):
NAN, LIN-HU
論文名稱:
荔枝乳酸菌的鑑定與 Weissella confusa E 菌株細菌素的特性分析
論文名稱(外文):
Identification of Lactic Acid Bacteria Isolated from Litchi Fruits and Characterization of Bacteriocin from Strain Weissella confusa E
指導教授:
陳奕伸
、
吳慧中
指導教授(外文):
CHEN, YI-SHENG
、
WU, HUI-CHUNG
口試委員:
陳奕伸
、
吳思霈
、
江志明
口試委員(外文):
CHEN, YI-SHENG
、
WU, SZU-PEI
、
CHIANG, CHIH-MING
口試日期:
2017-07-31
學位類別:
碩士
校院名稱:
銘傳大學
系所名稱:
生物科技學系碩士班
學門:
生命科學學門
學類:
生物科技學類
論文種類:
學術論文
論文出版年:
2018
畢業學年度:
106
語文別:
中文
論文頁數:
53
中文關鍵詞:
乳酸菌
、
Weissella confusa
、
細菌素
外文關鍵詞:
Lactic acid bacteria
、
Weissella confusa
、
Bacteriocin
相關次數:
被引用:0
點閱:667
評分:
下載:0
書目收藏:2
本研究的主要目的為分類與鑑定荔枝分離乳酸菌的菌種,同時研究分離菌株Weissella confusa E 所生產細菌素的特性。
研究初期主要依據16S rDNA基因,透過RFLP (restriction fragment length polymorphism)及定序來進行乳酸菌的初步分類與鑑定,其次嘗試利用rpoA RFLP來鑑定Leu. mesenteroides與Leu. pseudomesenteroides二個親緣性較高的乳酸菌菌種。此外,利用包括Fast protein liquid chromatography (FPLC),sep-pak C18 cartridges, RP-HPLC (Reversed-phase High performance liquid chromatographic)等步驟來純化Weissella confusa E 所生產的細菌素後,分析該細菌素的相關特性。
結果顯示荔枝分離到的104株乳酸菌共可分為6個群組,其中又以Leuconostoc的數目最多。結果顯示利用內切酶AccII或AluI裁切rpoA基因時可以有效區分Leu. mesenteroides與Leu. Pseudomesenteroides二菌種。在細菌素分析方面,結果顯示W. confusa E 所生產的細菌素大小約為3426.7 Da。結果亦顯示此細菌素對Listeria monocytogenes有抑菌效果。因分子大小相異於已知的W. confusa細菌素,因此推測有可能為新型的細菌素。
In this study, lactic acid bacteria (LAB) isolates were characterized and identified from litchi fruit. Strain Weissella confusa E isolated from litchi fruit was found to have bacteriocin-producing ability. The examination of characteristic of bacteriocin produced by W. confusa E was performed.
During the initial phase of research, based upon 16S rDNA gene sequence, classification and identification of LAB was done through 16S rDNA RFLP (restriction fragment length polymorphism) and 16S rDNA sequencing. On the other hand, rpoA RFLP was used in order to differentiate the two high-affinity LAB: Leuconostoc mesenteroides and Leu. Pseudomesenteroides. Furthermore, purification of the bacteriocin that produced by W. confusa E was performed with the use of FPLC (Fast protein liquid chromatography), sep-pak C18 cartridges, and RP-HPLC (Reversed-phase High performance liquid chromatographic). Characteristic of the bacteriocin was further examined
The 104 LAB isolated from litchi fruit were initially divided into five groups and Leuconostoc sp. was the most common species found. The results revealed that the restriction endonuclease AccII or AluI could cleave rpoA gene fragment, which could distinguish Leu. Mesenteroides and Leu. Pseudomesenteroide efficiently. Based on the bacteriologic test analysis, the molecular size of the bacteriocin, as determined by MALDI-TOF MS, revealed a distinctive peak corresponding to a molecular mass of 3426.7 Da. The data indicated the inhibitory activities of bacteriocin against Listeria monocytogenes. Because of the lack of identical results were found in the previous studies and its different molecular size compared to known bacteriocins from Weissella confusa, a novel bacteriocins were identified in this study.
中文摘要 1
Abstract 2
第一章 序論 3
第二章 實驗材料與方法 6
2-1荔枝乳酸菌之分類與鑑定 6
2-2菌株來源,保存與培養 7
2-3 指示菌培養 7
2-4細菌素生長之最佳溫度 8
2-5 細菌素的生長曲線 8
2-6細菌素的純化 9
2-7抗菌性圖譜 12
2-8 熱穩定性以及酵素分解實驗 12
2-9 Mass Spectrometry 13
第三章 結果 13
第四章 討論 17
參考文獻 20
圖目錄
Figure 1.16S rDNA RFLP patterns of HaeIII, AluI, and Mspl digests from Groups A-F. Lane M, size marker; H, HeaIII digested pattern; A, AluI digested pattern; M, Mspl digested pattern. 25
Figure 2. rpoA RFLP patterns of AccII and AluI digests from Group B1 and Group B2. Lane M, size marker; AccII, AccII digested pattern; AluI, AluI digested pattern. 26
Figure 3. Production of bacteriocin during the growth of Weissella confusa E. 27
Figure 4. Bacteriocin purification flow chart. 28
Figure 5. Elution pattern of the sample after two steps of purification, including FPLC (Strong anion-exchange chromatography) and sep-pak C18 cartridges by reversed-phase high-performance liquid chromatography on a C18 reverse-phase column. 29
Figure 6. Elution pattern of the sample after three steps of purification, including FPLC (Strong anion-exchange chromatography), sep-pak C18 cartridges, and first RP-HPLC by reversed-phase high-performance liquid chromatography on a C18 reverse-phase column. 30
Figure 7. MALDI mass spectrum of sample after four steps of purification, including FPLC (Strong anion-exchange chromatography), sep-pak C18 cartridges, first RP-HPLC, and second RP-HPLC. 31
Figure 8. Elution pattern of the sample after two steps of purification, including FPLC (Hydrophobic interaction chromatography) and sep-pak C18 cartridges by reversed-phase high-performance liquid chromatography on a C18 reverse-phase column. 32
Figure 9. Elution pattern of the sample after three steps of purification, including FPLC (Hydrophobic interaction chromatography), sep-pak C18 cartridges, and first RP-HPLC by reversed-phase high-performance liquid chromatography on a C18 reverse-phase column. 33
Figure 10. MALDI mass spectrum of sample after four steps of purification, including FPLC (Hydrophobic interaction chromatography), sep-pak C18 cartridges, first RP-HPLC, and second RP-HPLC. 34
Figure 11. Elution pattern of the sample after two steps of purification, including FPLC (Strong cation-exchange chromatography) and sep-pak C18 cartridges by reversed-phase high-performance liquid chromatography on a C18 reverse-phase column. 35
Figure 12. Elution pattern of the sample after three steps of purification, including FPLC (Strong cation-exchange chromatography), sep-pak C18 cartridges, and first RP-HPLC by reversed-phase high-performance liquid chromatography on a C18 reverse-phase column. 36
Figure 13. MALDI mass spectrum of sample after four steps of purification, including FPLC (Strong cation-exchange chromatography), sep-pak C18 cartridges, first RP-HPLC, and second RP-HPLC. 37
Figure 14. Elution pattern of the sample after three steps of purification, including FPLC (Strong cation-exchange chromatography), FPLC (Hydrophobic interaction chromatography), and sep-pak C18 cartridges by reversed-phase high-performance liquid chromatography on a C18 reverse-phase column. 38
Figure 15. Elution pattern of the sample after four steps of purification, including FPLC (Strong cation-exchange chromatography), FPLC (Hydrophobic interaction chromatography), sep-pak C18 cartridges, and first RP-HPLC by reversed-phase high-performance liquid chromatography on a C18 reverse-phase column. 39
Figure 16. MALDI mass spectrum of sample after five steps of purification, including FPLC (Strong cation-exchange chromatography), FPLC (Hydrophobic interaction chromatography), sep-pak C18 cartridges, first RP-HPLC, and second RP-HPLC. 40
表目錄
Table 1. Analysis results and characteristics of isolates. 41
Table 2. Analysis results and characteristics of isolates. 42
Table 3. Inhibition spectra of the bacteriocin produced by W. confusa E. 43
Table 4. Inhibitory spectra of bacteriocin from W. confusa E. 44
Table 5. Heat and Enzyme stability test of the bacteriocin 45
1.Bae S, Fleet GH, Heard GM (2006) Lactic acid bacteria associated with wine grapes from several Australian vineyards. J. Appl. Microbiol. 100, 712-727.
2.Goh HF, Philip K. (2015) Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS ONE. 10(10):e0140434.
3.Noonpakdee W, Santivarangkna C, Jumriangrit P, Sonomoto K, Panyim S. (2003) Isolation of nisin-producing Lactococcus lactis WNC 20 strain from nham, a traditional Thai fermented sausage. Int. J. Food Microbiol. 81:137-145.
4.Chen YS, Wu HC, Yanagida F. (2010) Isolation and characteristics of lactic acid bacteria isolated from ripe mulberries in Taiwan. Braz. J Microbiol. 41: 916-921.
5.Chen YS, Liao YJ, Lan YS, Wu HC, Yanagida F. (2017) Diversity of lactic acid bacteria associated with banana fruits in Taiwan. Curr Microbiol. 74: 484.
6.Chambel L, Chelo IM, Zé-Zé L, Pedro LG, Santos MA, Tenreiro R. (2006) Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int J Syst Evol Microbiol. 56(6):1375-81.
7.Su YC, Liao MC. (2017) Isolation and characteristic analysis of lactic acid bacteria isolated from Litchi (Unpublished bachelor's thesis). Ming Chuan University, Taoyuan, Taiwan.
8.Cascales E, Buchanan S, Duche D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D. (1993) Colicin Biology. Microbiol and Mol Bio Rev. 71(1), pp.158-229.
9.Gratia A. (1925) Sur un remarquable example d'antagonisme entre deux souches de colibacille. Compt. Rend. Soc. Biol. 93:1040-1041.
10.Gratia JP. (2000) André Gratia: a forerunner in microbial and viral genetics. Genetics. 156 (2):471-6.
11.Heng CKN, Wescombe PA, Burton JP, Jack RW, Tagg JR. (2007) The diversity of bacteriocins in Gram-positive bacteria. Springer, Hildbergp. 45-83.
12.Oman TJ, Boettcher JM, Wang H, Okalibe XN, Van der Donk WA. (2011) Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat ChemBiol. 7 (2): 78-80.
13.FAO/WHO Expert Committee on Food Additives. Specifications for identity and purity of some antibiotics. Twelfth Report. WHO Technical Reports series, No.430.
14.Tosukhowong A, Zendo T, Visessanguan W, Roytrakul S, Pumpuang L, Jeresitthikunchai J, Sonomoto K. (2012) Garvieacin Q, a novel class II bacteriocin from Lactococcusgarvieae BCC 43578. Appl Environ Microbiol. 78:1619-1623.
15.Chen H, & Hoover DG. (2003) Bacteriocins and their food applications. Comp Rev Food Sci Food Saf. 2:82-100.
16.Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Borzenkov VN, Levchuk VP, Svetoch OE, Kovalev YN, Stepanshin YG, Siragusa GR (2008) Diverse antimicrobial killing by Enterococcus faecium E 50-52 bacteriocin. J Agric Food Chem. 56:1942-1948.
17.Todorov SD, Wachsman M, Tome E, Dousset X, Destro MT, Dicks LM, de Melo Franco BD, Vaz-Velho M, Drider D (2010) Characterization of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol. 27:869-879.
18.Collins MD, Samelis J, Metaxopoulos J, Wallbanks S. (1993) Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Microbiol. 75 (6): 595-603.
19.Woraprayote W, Malila Y, Sorapukdee S, Swetwiwathana A, Benjakul S, Visessanguan W (2016) Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 120:118-132.
20.Sheu DS, Wang YT and Lee CY. (2000) Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology. 146:2019-2025.
21.Chen YS, Yanagida F, Hsu JS. (2006) Isolation and characterization of lactic acid bacteria from dochi (fermented black beans), a traditional fermented food in Taiwan. Lett Appl Microbiol. 2:229-235.
22.Chen YS, Wu HC, Liu CH, Chen HC, Yanagida F. (2010) Isolation and characterization of lactic acid bacteria from jiang-sun (fermented bamboo shoots), a traditional fermented food in Taiwan. J Sci Food Agric. 12:1977-1982.
23.Chen YS, Yanagida F, Shinohara T (2005) Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. LeTT App. Microbiol. 40:195-200.
24.Macfarlane GT, Steed H, and Macfarlane S. (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 104 (2): 305-344.
25.Sumathi V, Reetha D. (2012) Screening of Lactic Acid Bacteria for Their Antimicrobial Activity against Pathogenic Bacteria. International Journal of Pharmaceutical & Biological Archives 3(4):802-808.
26.Sharma N, Kapoor G, Neopaney B. (2006) Characterization of a new bacteriocin isolated from a novel isolated strain Bacillus lentus NG 121. Antonie van Leeuwenhock. 89:337-343.
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
乳酸菌細菌素抗菌作用及其在食品上應用之回顧
2.
產細菌素乳酸菌在輕度加工生菜沙拉中抑制病原菌生長的影響
3.
LactobacillusacidophilusLC1細菌素之生產及其在牛乳保鮮上之應用
4.
由乳酸菌發酵液中分離細菌素及其特性之探討
5.
醃漬酸菜及嗜酸乳粉分離之乳酸菌產生細菌素之特性
6.
乳酸菌抑制幽門桿菌及其尿素酶活性之探討
7.
乳酸菌與芽孢桿菌抗菌物質之製備與其在化妝品配方之應用
8.
乳酸菌抑菌活性及其plantaricin基因組之研究
9.
產細菌素乳酸菌的分離、篩選及細菌素純化條件之研究
10.
於乳酸桿菌屬資料庫中篩選新的細菌素
11.
新型細菌素Weissellicin L的分析與咖啡生豆上乳酸菌相的研究
12.
烏魚分離乳酸菌之特性分析
13.
分離純化乳酸菌抑菌素及其特性分析
14.
紅茶乳酸菌發酵條件及產物之抗菌活性
15.
乳酸菌所產生抗菌物質抑制多重抗藥性金黃色葡萄球菌能力之分析
無相關期刊
1.
烏魚分離乳酸菌之特性分析
2.
Lactobacillus plantarum 132的細菌素純化與特性分析
3.
新型細菌素Weissellicin L的分析與咖啡生豆上乳酸菌相的研究
4.
利用咖啡渣為原料培養乳酸菌生產細菌素
5.
應用幽默表現方法於公仔造形設計
6.
Part I. 殼聚醣抗菌圖譜調查Part II. 乳酸菌細菌素純化與特性分析
7.
從台灣傳統發酵食品醃薑中分離乳酸菌並測試其特性
8.
在阿拉伯芥大量表現乳酸菌Enterocin SE-K4增強耐冷與抑制李斯特菌生長
9.
苯乳酸與乳酸菌細菌素之組合抗菌活性及其於烘焙食品之研究
10.
耐鹽性乳酸菌細菌素的生物活性評估及應用性評估
11.
兩岸警察共同打擊電信詐騙犯罪治理之研究
12.
台灣網路成癮行為之決定因素與影響
13.
臺灣、新加坡與韓國八年級學生數學學習成就因素之研究
14.
於乳酸桿菌屬資料庫中篩選新的細菌素
15.
乳酸菌分離株之抗菌活性與細菌素基因探討及應用
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室