跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏淳郁
研究生(外文):Chun-Yu Wei
論文名稱:人類白血球抗原B型1502在卡巴氮平引發之史帝文生強生症候群及毒性表皮溶解症中所扮演的角色
論文名稱(外文):Pathological role of HLA-B*1502 in carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis
指導教授:陳垣崇陳垣崇引用關係洪舜郁
指導教授(外文):Yuan-Tsong ChenShuen-Iu Hung
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:92
中文關鍵詞:藥物不良反應卡巴氮平
外文關鍵詞:adverse drug reactioncarbamazepine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:467
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
Increasing studies revealed that HLA alleles are the major genetic determinants of drug hypersensitivity; however, the underlying molecular mechanism remains unclear. Here, we adopt the HLA-B*1502 genetic predisposition to carbamazepine (CBZ)-induced Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) as a model to study the pathological role of HLA in delayed-type drug hypersensitivity. We in vitro expanded CBZ-specific cytotoxic T lymphocytes (CTLs) from CBZ-SJS/TEN patients and analyzed the interaction between HLA-B and CBZ/analogs by CTLs response, surface plasmon resonance, peptide binding assay, site-direct mutagenesis, and computer modeling. The majority of aromatic anti epileptic drugs (AEDs)-specific T cells generated from CBZ-SJS/TEN patients was CD8+ cytotoxic T lymphocyte (CTL) with massive expression of cytolytic components, such as granulysin, perforin, and granzyme B. The endogenous peptides-loaded HLA-B*1502 molecule presented aromatic AEDs to CTLs without the involvement of intracellular drug metabolism or antigen processing. The HLA-B*1502/peptide/??m protein complex showed binding affinity toward chemicals sharing 5-carboxamide on the tricyclic ring as CBZ. However, modifications of the ring structure of CBZ altered HLA-B*1502 binding and CTLs response. In addition to HLA-B*1502, other HLA-B75 members could also present CBZ to activate CTLs, whereas members of HLA-B62 and B72 could not. Three residues (Asn63, Ile95, and Leu156) in the peptide-binding groove of HLA-B*1502 were involved in CBZ presentation and CTLs activation. In particular, Asn63 shared by members of B75 was the key residue. Computer simulations revealed a preferred molecular conformation of 5-carboxamide group of CBZ and the side chain of Arg62 on the B pocket of HLA-B*1502. Besides, Asn63 also responded to the interaction between HLA-B*1502 and PHT or LTG. In conclusion, this study demonstrates a direct interaction of HLA with drugs, provides a detailed molecular mechanism of HLA-B*1502-associated drug hypersensitivity, and has clinical correlations for CBZ-induced SJS/TEN and the cross-reactivity to aromatic AEDs.
Contents

Signature Page I
Thesis approval form II
Acknowledgement i
Table of Contents ii
List of Tables vi
List of Figures vii
List of Abbreviation ix
Abstract xi

Chapter 1. Introduction 1
1.1 Adverse drug reactions (ADRs) 1
1.2 Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) 2
1.2.1 Clinical features 2
1.2.2 Pathogenesis 3
1.2.3 Epidemiology 3
1.3 Carbamazepine-induced drug hypersensitivity 4
1.3.1 Carbamazepine (CBZ) 4
1.3.2 Carbamazepine-induced hypersensitivity syndrome (HSS) 5
1.3.3 Carbamazepine-SJS/TEN 5
1.3.4 Cross-reactivity of aromatic anti-epileptic drugs (AEDs) 6
1.4 Pharmacogenomic studies on ADRs 7
1.4.1 Strong association between HLA-B*1502 and CBZ-SJS/TEN 8
1.4.2 Association between HLA-B*1502 and aromatic AEDs-induced SCARs 9
1.4.3 Association between HLA-B*75 and CBZ-SJS/TEN 9
1.4.4 HLA association of drug hypersensitivity is ethnicity- and phenotype- specific 10
1.5 The role of HLA in drug hypersensitivity 11
1.5.1 Human Leukocyte Antigen (HLA) 11
1.5.2 Antigen presentation by HLA 12
1.5.3 Drug presentation mechanisms: the hapten/prohapten concept 13
1.5.4 Drug presentation mechanisms: the p-i concept 13
1.5.5 The roles of HLA-loaded peptides in drug hypersensitivity 14
1.6 Specific aims 15
Chapter 2. Materials and Methods 16
2.1 Clinical samples 16
2.2 Chemicals and antibodies 16
2.3 Constructs 17
2.4 Cell lines 18
2.5 Electroporation 19
2.6 Class I HLA enzyme-linked immunosorbent assay (ELISA) 20
2.7 SDS pages 20
2.8 Western blotting 21
2.9 Immunoprecipitation assay 22
2.10 Generation of CBZ-specific T cell lines and clones 22
2.11 Lymphocyte transformation test 22
2.12 T cell proliferation assays 23
2.13 T cell cytotoxic assays 23
2.14 Purification of soluble HLA-B proteins 24
2.15 Surface plasmon resonance (SPR) measurement and analyses 25
2.16 HLA-B*1502 peptide-binding assay 25
2.17 Enzyme-linked immunosorbent assay (ELISA) 25
2.18 Enzyme-linked immunospot (ELISpot) assay 26
2.19 In silico modeling of drugs and the peptide-loaded HLA-B*1502 complex 26
2.20 Flow analysis 27
Chapter 3. Results 28
3.1 Characteristics of CBZ-specific CTLs in CBZ-SJS/TEN 28
3.2 HLA-B*1502-dependent activation of CBZ-specific CTLs in CBZ-SJS/TEN 29
3.3 No involvement of intracellular metabolism or antigen processing in the CTLs activation
in CBZ-SJS/TEN 30
3.4 HLA-B*1502 protein directly binds to CBZ and its structural analogs to activate CTLs in
CBZ-SJS/TEN 31
3.5 The 5-carboxamide chemical moiety of CBZ is required for HLA-B*1502 presentation 31
3.6 HLA-B75 members exhibit binding ability to CBZ for antigen presentation in CBZ-
SJS/TEN 32
3.7 Key residues in the peptide-binding groove of HLA-B*1502 for CBZ presentation 33
3.8 Endogenous peptides loaded on HLA-B*1502 proteins are required for CBZ presentation
and CTLs activation in CBZ-SJS/TEN 34
3.9 In silico modeling highlights the molecular map of CBZ in HLA-B*1502 34
3.10 CBZ-specific T cells cross-reacted to phenytoin and lamotrigine 35
3.11 T cells of CBZ-SJS/TEN patients showed cross-reactivity to aromatic AEDs with a
conserved HLA-B*1502 genetic background 36
3.12 PHT and LTG are presented to T-cells in the absence of antigen processing pathway 37
3.13 PHT and LTG directly interact with peptide-loaded HLA-B*1502 38
3.14 Simulation of PHT and LTG binding sites on HLA-B*1502 39
Chapter 4. Discussion 40
4.1 The CBZ presentation mechanism 40
4.2 Direct interaction between HLA-B*1502 and aromatic AEDs 42
4.3 5-carboxamide group is critical for the interaction of CBZ analogs with HLA-B*1502 43
4.4 Licarbazepine is a weaker allergen 44
4.5 Cross-reactivity with aromatic AEDs 45
4.6 HLA class I loaded peptides are important for HLA/drug recognition 46
4.7 Difference between CBZ-SJS/TEN and CBZ-MPE/HSS 47
4.8 Why skin is the major target for ADRs 49
4.9 Circulating CBZ-specific T cells generated in the study share the same mechanism or
phenotype as infiltrating T cells in SJS lesions 50
4.10 Drug interaction with HLA and TCR 51
4.11 CBZ-specific TCR 51
4.12 The pathological role of HLA-A*3101 52
4.13 Limitation of in vitro T cells study 53
4.14 Summary and significance 53
Chapter 5. References 55
Chapter 6. Tables 64
Chapter 7. Figures 73


1. Lazarou, J., Pomeranz, B.H. & Corey, P.N. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. Jama 279, 1200-1205 (1998).
2. Pirmohamed, M., Naisbitt, D.J., Gordon, F. & Park, B.K. The danger hypothesis--potential role in idiosyncratic drug reactions. Toxicology 181-182, 55-63 (2002).
3. Pirmohamed, M. & Park, B.K. Genetic susceptibility to adverse drug reactions. Trends Pharmacol Sci 22, 298-305 (2001).
4. Wei, C.Y., Ko, T.M., Shen, C.Y. & Chen, Y.T. A Recent Update of Pharmacogenomics in Drug-Induced Severe Skin Reactions. Drug Metab Pharmacokinet.
5. Park, B.K., Pirmohamed, M. & Kitteringham, N.R. Role of drug disposition in drug hypersensitivity: a chemical, molecular, and clinical perspective. Chem Res Toxicol 11, 969-988 (1998).
6. Pichler, W., Yawalkar, N., Schmid, S. & Helbling, A. Pathogenesis of drug-induced exanthems. Allergy 57, 884-893 (2002).
7. Roujeau, J.C. Clinical heterogeneity of drug hypersensitivity. Toxicology 209, 123-129 (2005).
8. Kehren, J. et al. Cytotoxicity is mandatory for CD8(+) T cell-mediated contact hypersensitivity. J Exp Med 189, 779-786 (1999).
9. Yawalkar, N. et al. Infiltration of cytotoxic T cells in drug-induced cutaneous eruptions. Clin Exp Allergy 30, 847-855 (2000).
10. Stevens, A.M. & Johnson, F.C. A new eruptive fever associated with stomatitis and ophthalmia - Report of two cases in children. American Journal of Diseases of Children 24, 526-533 (1922).
11. Lyell, A. Toxic epidermal necrolysis: an eruption resembling scalding of the skin. Br J Dermatol 68, 355-361 (1956).
12. Roujeau, J.C. et al. Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. N Engl J Med 333, 1600-1607 (1995).
13. Roujeau, J.C. The spectrum of Stevens-Johnson syndrome and toxic epidermal necrolysis: a clinical classification. J Invest Dermatol 102, 28S-30S (1994).
14. Paul, C. et al. Apoptosis as a mechanism of keratinocyte death in toxic epidermal necrolysis. Br J Dermatol 134, 710-714 (1996).
15. Leyva, L. et al. Anticonvulsant-induced toxic epidermal necrolysis: monitoring the immunologic response. J Allergy Clin Immunol 105, 157-165 (2000).
16. Naisbitt, D.J. et al. Hypersensitivity reactions to carbamazepine: characterization of the specificity, phenotype, and cytokine profile of drug-specific T cell clones. Mol Pharmacol 63, 732-741 (2003).
17. Naisbitt, D.J. et al. Characterization of drug-specific T cells in lamotrigine hypersensitivity. J Allergy Clin Immunol 111, 1393-1403 (2003).
18. Zanni, M.P. et al. Characterization of lidocaine-specific T cells. J Immunol 158, 1139-1148 (1997).
19. Mauri-Hellweg, D. et al. Activation of drug-specific CD4+ and CD8+ T cells in individuals allergic to sulfonamides, phenytoin, and carbamazepine. J Immunol 155, 462-472 (1995).
20. Pichler, W.J. & Yawalkar, N. Allergic reactions to drugs: involvement of T cells. Thorax 55 Suppl 2, S61-65 (2000).
21. Nassif, A. et al. Drug specific cytotoxic T-cells in the skin lesions of a patient with toxic epidermal necrolysis. J Invest Dermatol 118, 728-733 (2002).
22. Posadas, S.J. et al. Delayed reactions to drugs show levels of perforin, granzyme B, and Fas-L to be related to disease severity. J Allergy Clin Immunol 109, 155-161 (2002).
23. Leyva, L. et al. Anticonvulsant-induced toxic epidermal necrolysis: monitoring the immunologic response. J Allergy Clin Immunol 105, 157-165 (2000).
24. Chung, W.H. et al. Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis. Nat Med 14, 1343-1350 (2008).
25. Rzany, B. et al. Epidemiology of erythema exsudativum multiforme majus, Stevens-Johnson syndrome, and toxic epidermal necrolysis in Germany (1990-1992): structure and results of a population-based registry. J Clin Epidemiol 49, 769-773 (1996).
26. Chung, W.H. et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428, 486 (2004).
27. Wolf, R., Orion, E., Marcos, B. & Matz, H. Life-threatening acute adverse cutaneous drug reactions. Clin Dermatol 23, 171-181 (2005).
28. Fagot, J.P. et al. Nevirapine and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. AIDS 15, 1843-1848 (2001).
29. Mockenhaupt, M. et al. Stevens-Johnson syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J Invest Dermatol 128, 35-44 (2008).
30. Halevy, S. et al. Allopurinol is the most common cause of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J Am Acad Dermatol 58, 25-32 (2008).
31. Vittorio, C.C. & Muglia, J.J. Anticonvulsant hypersensitivity syndrome. Arch Intern Med 155, 2285-2290 (1995).
32. Tennis, P. & Stern, R.S. Risk of serious cutaneous disorders after initiation of use of phenytoin, carbamazepine, or sodium valproate: a record linkage study. Neurology 49, 542-546 (1997).
33. Albani, F., Riva, R. & Baruzzi, A. Carbamazepine clinical pharmacology: a review. Pharmacopsychiatry 28, 235-244 (1995).
34. Soderpalm, B. Anticonvulsants: aspects of their mechanisms of action. Eur J Pain 6 Suppl A, 3-9 (2002).
35. Pearce, R.E., Vakkalagadda, G.R. & Leeder, J.S. Pathways of carbamazepine bioactivation in vitro I. Characterization of human cytochromes P450 responsible for the formation of 2- and 3-hydroxylated metabolites. Drug Metab Dispos 30, 1170-1179 (2002).
36. Bellucci, G., Berti, G., Chiappe, C., Lippi, A. & Marioni, F. The metabolism of carbamazepine in humans: steric course of the enzymatic hydrolysis of the 10,11-epoxide. J Med Chem 30, 768-773 (1987).
37. Lillibridge, J.H. et al. Protein-reactive metabolites of carbamazepine in mouse liver microsomes. Drug Metab Dispos 24, 509-514 (1996).
38. Gaedigk, A., Spielberg, S.P. & Grant, D.M. Characterization of the microsomal epoxide hydrolase gene in patients with anticonvulsant adverse drug reactions. Pharmacogenetics 4, 142-153 (1994).
39. Green, V.J. et al. Genetic analysis of microsomal epoxide hydrolase in patients with carbamazepine hypersensitivity. Biochem Pharmacol 50, 1353-1359 (1995).
40. Bessmertny, O. & Pham, T. Antiepileptic hypersensitivity syndrome: clinicians beware and be aware. Curr Allergy Asthma Rep 2, 34-39 (2002).
41. Arif, H. et al. Comparison and predictors of rash associated with 15 antiepileptic drugs. Neurology 68, 1701-1709 (2007).
42. Alvestad, S., Lydersen, S. & Brodtkorb, E. Rash from antiepileptic drugs: influence by gender, age, and learning disability. Epilepsia 48, 1360-1365 (2007).
43. Mockenhaupt, M., Messenheimer, J., Tennis, P. & Schlingmann, J. Risk of Stevens-Johnson syndrome and toxic epidermal necrolysis in new users of antiepileptics. Neurology 64, 1134-1138 (2005).
44. Hung, S.I. et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics 11, 349-356 (2010).
45. Locharernkul, C. et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*1502 allele in Thai population. Epilepsia 49, 2087-2091 (2008).
46. Edwards, S.G., Hubbard, V., Aylett, S. & Wren, D. Concordance of primary generalised epilepsy and carbamazepine hypersensitivity in monozygotic twins. Postgrad Med J 75, 680-681 (1999).
47. Ingelman-Sundberg, M., Oscarson, M. & McLellan, R.A. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 20, 342-349 (1999).
48. Mondino, B.J., Brown, S.I. & Biglan, A.W. HLA antigens in Stevens-Johnson syndrome with ocular involvement. Arch Ophthalmol 100, 1453-1454 (1982).
49. Power, W.J. et al. HLA typing in patients with ocular manifestations of Stevens-Johnson syndrome. Ophthalmology 103, 1406-1409 (1996).
50. Roujeau, J.C. et al. Genetic susceptibility to toxic epidermal necrolysis. Arch Dermatol 123, 1171-1173 (1987).
51. Roujeau, J.C. et al. HLA phenotypes and bullous cutaneous reactions to drugs. Tissue Antigens 28, 251-254 (1986).
52. Shirato, S., Kagaya, F., Suzuki, Y. & Joukou, S. Stevens-Johnson syndrome induced by methazolamide treatment. Arch Ophthalmol 115, 550-553 (1997).
53. Hung, S.I. et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A 102, 4134-4139 (2005).
54. Mallal, S. et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359, 727-732 (2002).
55. Daly, A.K. et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41, 816-819 (2009).
56. Singer, J.B. et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 42, 711-714 (2010).
57. Qiao, H.L., Yang, J. & Zhang, Y.W. Specific serum IgE levels and FcepsilonRIbeta genetic polymorphism in patients with penicillins allergy. Allergy 59, 1326-1332 (2004).
58. Gueant-Rodriguez, R.M. et al. Gene-gene interactions of IL13 and IL4RA variants in immediate allergic reactions to betalactam antibiotics. Pharmacogenet Genomics 16, 713-719 (2006).
59. Guglielmi, L. et al. IL-10 promoter and IL4-Ralpha gene SNPs are associated with immediate beta-lactam allergy in atopic women. Allergy 61, 921-927 (2006).
60. Gueant-Rodriguez, R.M. et al. Association of tumor necrosis factor-alpha -308G>A polymorphism with IgE-mediated allergy to betalactams in an Italian population. Pharmacogenomics J 8, 162-168 (2008).
61. Hung, S.I. et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 16, 297-306 (2006).
62. Lonjou, C. et al. A marker for Stevens-Johnson syndrome ...: ethnicity matters. Pharmacogenomics J 6, 265-268 (2006).
63. Alfirevic, A. et al. HLA-B locus in Caucasian patients with carbamazepine hypersensitivity. Pharmacogenomics 7, 813-818 (2006).
64. Mehta, T.Y. et al. Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians. Indian J Dermatol Venereol Leprol 75, 579-582 (2009).
65. Chang, C.C., Too, C.L., Murad, S. & Hussein, S.H. Association of HLA-B*1502 allele with carbamazepine-induced toxic epidermal necrolysis and Stevens-Johnson syndrome in the multi-ethnic Malaysian population. Int J Dermatol 50, 221-224 (2011).
66. Man, C.B. et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 48, 1015-1018 (2007).
67. Tassaneeyakul, W. et al. Association between HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in a Thai population. Epilepsia 51, 926-930 (2010).
68. Wang, Q. et al. Association between HLA-B*1502 allele and carbamazepine-induced severe cutaneous adverse reactions in Han people of southern China mainland. Seizure (2011).
69. Wu, X.T. et al. Association between carbamazepine-induced cutaneous adverse drug reactions and the HLA-B*1502 allele among patients in central China. Epilepsy Behav 19, 405-408 (2010).
70. Chen, P. et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N Engl J Med 364, 1126-1133 (2011).
71. Kaniwa, N. et al. HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia 51, 2461-2465 (2010).
72. Kim, S.H. et al. Carbamazepine-induced severe cutaneous adverse reactions and HLA genotypes in Koreans. Epilepsy Res (2010).
73. Ozeki, T. et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 20, 1034-1041 (2010).
74. McCormack, M. et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 364, 1134-1143 (2011).
75. Kaniwa, N. et al. HLA-B locus in Japanese patients with anti-epileptics and allopurinol-related Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 9, 1617-1622 (2008).
76. Lonjou, C. et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 18, 99-107 (2008).
77. Hughes, A.R. et al. Association of genetic variations in HLA-B region with hypersensitivity to abacavir in some, but not all, populations. Pharmacogenomics 5, 203-211 (2004).
78. Martin, A.M. et al. Predisposition to nevirapine hypersensitivity associated with HLA-DRB1*0101 and abrogated by low CD4 T-cell counts. AIDS 19, 97-99 (2005).
79. Littera, R. et al. HLA-dependent hypersensitivity to nevirapine in Sardinian HIV patients. AIDS 20, 1621-1626 (2006).
80. Gatanaga, H. et al. HLA-Cw8 primarily associated with hypersensitivity to nevirapine. AIDS 21, 264-265 (2007).
81. Chantarangsu, S. et al. HLA-B*3505 allele is a strong predictor for nevirapine-induced skin adverse drug reactions in HIV-infected Thai patients. Pharmacogenet Genomics 19, 139-146 (2009).
82. Kim, S.H. et al. The human leucocyte antigen-DRB1*1302-DQB1*0609-DPB1*0201 haplotype may be a strong genetic marker for aspirin-induced urticaria. Clin Exp Allergy 35, 339-344 (2005).
83. Kim, S.H., Ye, Y.M., Lee, S.K. & Park, H.S. Genetic mechanism of aspirin-induced urticaria/angioedema. Curr Opin Allergy Clin Immunol 6, 266-270 (2006).
84. Nassif, A. et al. Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol 114, 1209-1215 (2004).
85. Wu, Y. et al. Activation of T cells by carbamazepine and carbamazepine metabolites. J Allergy Clin Immunol 118, 233-241 (2006).
86. Vyas, J.M., Van der Veen, A.G. & Ploegh, H.L. The known unknowns of antigen processing and presentation. Nat Rev Immunol 8, 607-618 (2008).
87. Padovan, E., Bauer, T., Tongio, M.M., Kalbacher, H. & Weltzien, H.U. Penicilloyl peptides are recognized as T cell antigenic determinants in penicillin allergy. Eur J Immunol 27, 1303-1307 (1997).
88. Chessman, D. et al. Human leukocyte antigen class I-restricted activation of CD8+ T cells provides the immunogenetic basis of a systemic drug hypersensitivity. Immunity 28, 822-832 (2008).
89. Pichler, W.J. Delayed drug hypersensitivity reactions. Ann Intern Med 139, 683-693 (2003).
90. Griem, P., Wulferink, M., Sachs, B., Gonzalez, J.B. & Gleichmann, E. Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol Today 19, 133-141 (1998).
91. Pichler, W.J. et al. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int 55, 17-25 (2006).
92. Christiansen, C. Late-onset allergy-like reactions to X-ray contrast media. Curr Opin Allergy Clin Immunol 2, 333-339 (2002).
93. Adam, J., Pichler, W.J. & Yerly, D. Delayed drug hypersensitivity: models of T-cell stimulation. Br J Clin Pharmacol 71, 701-707 (2011).
94. Schnyder, B., Mauri-Hellweg, D., Zanni, M., Bettens, F. & Pichler, W.J. Direct, MHC-dependent presentation of the drug sulfamethoxazole to human alphabeta T cell clones. J Clin Invest 100, 136-141 (1997).
95. Zanni, M.P. et al. HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes. J Clin Invest 102, 1591-1598 (1998).
96. Ou Yang, C.W. et al. HLA-B*1502-bound peptides: implications for the pathogenesis of carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol 120, 870-877 (2007).
97. Burkhart, C. et al. Non-covalent presentation of sulfamethoxazole to human CD4+ T cells is independent of distinct human leucocyte antigen-bound peptides. Clin Exp Allergy 32, 1635–1643 (2002).
98. Gamerdinger, K. et al. A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel. J Exp Med 197, 1345-1353 (2003).
99. Zemmour, J., Little, A.M., Schendel, D.J. & Parham, P. The HLA-A,B "negative" mutant cell line C1R expresses a novel HLA-B35 allele, which also has a point mutation in the translation initiation codon. J Immunol 148, 1941-1948 (1992).
100. Ko, T.M. et al. Shared and restricted T-cell receptor use is crucial for carbamazepine-induced Stevens-Johnson syndrome. J Allergy Clin Immunol (2011).
101. Kessler, J.H. et al. Competition-based cellular peptide binding assay for HLA class I. Curr Protoc Immunol Chapter 18, Unit 18 12 (2004).
102. Pirmohamed, M., Kitteringham, N.R., Guenthner, T.M., Breckenridge, A.M. & Park, B.K. An investigation of the formation of cytotoxic, protein-reactive and stable metabolites from carbamazepine in vitro. Biochem Pharmacol 43, 1675-1682 (1992).
103. Castrejon, J.L. et al. Stimulation of human T cells with sulfonamides and sulfonamide metabolites. J Allergy Clin Immunol 125, 411-418 e414 (2010).
104. Volosov, A. et al. Enantioselective pharmacokinetics of 10-hydroxycarbazepine after oral administration of oxcarbazepine to healthy Chinese subjects. Clin Pharmacol Ther 66, 547-553 (1999).
105. Almeida, L. & Soares-da-Silva, P. Eslicarbazepine acetate (BIA 2-093). Neurotherapeutics 4, 88-96 (2007).
106. Friis, M.L. et al. Therapeutic experiences with 947 epileptic out-patients in oxcarbazepine treatment. Acta Neurol Scand 87, 224-227 (1993).
107. Dogan, E.A., Usta, B.E., Bilgen, R., Senol, Y. & Aktekin, B. Efficacy, tolerability, and side effects of oxcarbazepine monotherapy: a prospective study in adult and elderly patients with newly diagnosed partial epilepsy. Epilepsy Behav 13, 156-161 (2008).
108. Lin, L.C., Lai, P.C., Yang, S.F. & Yang, R.C. Oxcarbazepine-induced Stevens-Johnson syndrome: a case report. Kaohsiung J Med Sci 25, 82-86 (2009).
109. LaRoche, S.M. & Helmers, S.L. The new antiepileptic drugs: clinical applications. JAMA 291, 615-620 (2004).
110. LaRoche, S.M. & Helmers, S.L. The new antiepileptic drugs: scientific review. JAMA 291, 605-614 (2004).
111. Bohan, K.H., Mansuri, T.F. & Wilson, N.M. Anticonvulsant hypersensitivity syndrome: implications for pharmaceutical care. Pharmacotherapy 27, 1425-1439 (2007).
112. Kazeem, G.R. et al. High-resolution HLA genotyping and severe cutaneous adverse reactions in lamotrigine-treated patients. Pharmacogenet Genomics 19, 661-665 (2009).
113. Yang, L., Chen, J. & He, L. Harvesting candidate genes responsible for serious adverse drug reactions from a chemical-protein interactome. PLoS Comput Biol 5, e1000441 (2009).
114. Bastuji-Garin, S. et al. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch Dermatol 129, 92-96 (1993).
115. Pichler, W.J. et al. High IL-5 production by human drug-specific T cell clones. Int Arch Allergy Immunol 113, 177-180 (1997).
116. Dearman, R.J., Basketter, D.A. & Kimber, I. Characterization of chemical allergens as a function of divergent cytokine secretion profiles induced in mice. Toxicol Appl Pharmacol 138, 308-316 (1996).
117. Dearman, R.J., Moussavi, A., Kemeny, D.M. & Kimber, I. Contribution of CD4+ and CD8+ T lymphocyte subsets to the cytokine secretion patterns induced in mice during sensitization to contact and respiratory chemical allergens. Immunology 89, 502-510 (1996).
118. Tang, Y.H. et al. Poor relevance of a lymphocyte proliferation assay in lamotrigine-induced Stevens-Johnson syndrome or toxic epidermal necrolysis. Clin Exp Allergy (2011).
119. Mora, J.R. & von Andrian, U.H. T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol 27, 235-243 (2006).
120. Schaerli, P. et al. A skin-selective homing mechanism for human immune surveillance T cells. J Exp Med 199, 1265-1275 (2004).
121. Friedmann, P.S., Strickland, I., Pirmohamed, M. & Park, B.K. Investigation of mechanisms in toxic epidermal necrolysis induced by carbamazepine. Arch Dermatol 130, 598-604 (1994).
122. Guglielmi, L., Guglielmi, P. & Demoly, P. Drug hypersensitivity: epidemiology and risk factors. Curr Pharm Des 12, 3309-3312 (2006).
123. Aceves-Avila, F.J. & Benites-Godinez, V. Drug allergies may be more frequent in systemic lupus erythematosus than in rheumatoid arthritis. J Clin Rheumatol 14, 261-263 (2008).



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top