|
[1-1] http:// www.nmns.edu.tw/. [1-2] http://www.newenergy.org.cn/html/0068/2006816_11458.html [1-3] C. Hu, and R.M. White, “Solar Cells: From Basic to Advanced Systems,” McGraw-Hill, New York, 1983. [1-4] http://www.nrel.gov/. [1-5] E. Iwaniczko, Y. Xu, R.E.I. Schropp, A.H. Mahan, “Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD,” Thin Solid Films, Vol. 430, 2003, p.212. [1-6] K.F. Feenstra, R.E.I. Schropp, W.F. van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys., Vol. 85, 1999, p. 6843. [1-7] R.W. Collins and A.S. Ferlauto et al., “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Solar Energy Materials & Solar Cells, Vol. 78, 2003, p. 143. [1-8] K. C. Park, D. Y. Ma, and K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering,” Thin Solid Films, Vol 305, 1997, p.201. [1-9] K. H. Kim, K. C. Park, and D. Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys., Vol 81, 1997, p.7764. [1-10] K. Ellmer, “Resistivity of polycrystalline zinc oxide films: current status and physical limit,” J. Phys. D: Appl. Phys., Vol.34, 2001, p.3097. [1-11] http://www.pv.kaneka.co.jp/why/index.html. [1-12] http://www.materialsnet.com.tw/DocView.aspx?id=8238 [1-13] A. J. Lewis, “Use of hydrogenation in the study of the transport properties of amorphous germanium,” Phys. Rev. B, Vol. 14, 1976, p. 658. [1-14] M. Burgelman et al., “Modeling Thin-film PV Devices,” Prog. Photovoltaics, Vol 12, 2004, p. 143. [1-15] H. Zhu et al., “Application of AMPS-1D for solar cell simulation,” AIP Conf. Proc, Vol. 462, 1999, p. 309. [1-16] P. A. Basore and D. A. Clugston, “PC1D Version 4 for windows: From analysis to design,” in 25th IEEE PVS, 1996, p. 377–381. [1-17] D.A. Clugston, P.A. Basore, “PC1D Version 5: 32-bit solar cell modeling on personal computers,” in 26th IEEE PVS, 1997, p. 207–210. [1-18] S. Williams and K. Varahramyan, “A new TCAD-based statistical methodology for the optimization and sensitivity analysis of semiconductor technologies,” IEEE Trans. Semicond. Manuf, Vol. 13, 2000, p.208. [2-1] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett., Vol 28, 1976, p. 671. [2-2] D. L. Stabler and C. R. Wronski, “Reversible conductivity changes in discharge -produced amorphous Si,” Appl. Phys. Lett., Vol. 31, 1977, p. 292. [2-3] T. L. Chu. Shirley S, Chu. E. G. Byiander, and S. T. Ang, “ Reduced photoinduced degradation in chemical vapor deposited hydrogenated amorphous silicon films,” Appl. Phys. Lett., Vol 52, 1988, p. 807. [2-4] Noboru Nakamur et al., “The Influence of the Si-H2 Bond on the Light-Induced Effect in a-Si Films and a-Si Solar Cells” Jpn. J. Appl. Phys., Vol. 28, 1989, pp. 1762. [2-5] A. H. Mahan et al., “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys., Vol. 69, 1991, p. 6728. [2-6] Yoshihiro Hamakawa et al., “New types of high efficiency solar cells based on a-Si,” Appl. Phys. Lett., Vol. 43, 1983, p. 644. [2-7] J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett., Vol. 70, 1997, p. 2975. [2-8] J. Meier, FL Fliickiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell-Crystalline or amorphous cell behavior ?” Appl. Phys. Lett., Vol. 65, 1994, p. 860. [2-9] R. Fliickiger, J. Meier, M. Goetz;and A. Shah, “Electrical properties and degradation kinetics of compensated hydrogenated microcrystalline silicon deposited by very high-frequency-glow discharge,” Appl. Phys. Lett., Vol. 77, 1995, p. 712. [2-10] P. Torres et al., “Device grade microcrystalline silicon owing to reduced oxygen contamination,” Appl. Phys. Lett., Vol. 69, 1996, p. 1373. [2-11] M. N. van den Donker et al., “Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow,” Appl. Phys. Lett., Vol. 87, 2005, p. 263503. [2-12] Y. Mai et al., “Microcrystalline silicon solar cells deposited at high rates,” J. Appl. Phys., Vol. 97, 2005, p. 114913. [2-13] J. Meier et al., “Towards high-efficiency thin-film silicon solar cell with the micromorph concept,” Solar Energy Materials & Solar cells, Vol. 49, 1997, p. 35. [2-14] J. Meier et al., “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films, Vol. 451-452, 2004, p.518. [2-15] P. Buehlmann et al., “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett., Vol. 91, 2007, pp. 143505. [2-16] T. Söderström et al., “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett., Vol. 94, 2009, p. 063501. [3-1] http:// pveducation.org/pvcdrom/manufacturing/first-photovoltaic-devices [3-2] M. Vukadinovic et al., “Transport in tunneling recombination junctions: A combined computer simulation study,” J. Appl. Phys., Vol. 96, 2004, p. 7289.
|