跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/22 04:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊淞
研究生(外文):Jiun-Sung Huang
論文名稱:矽基型單接面與多接面太陽電池數據 模擬分析研究
論文名稱(外文):Numerical modeling of silicon-based single-junction and multi-junction solar cells
指導教授:林楚軒
指導教授(外文):Chu-Hsuan Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:84
中文關鍵詞:矽基型太陽電池非晶矽/微晶矽堆疊式太陽電池多接面太陽電池
外文關鍵詞:Silicon-based solar cellMicromorphMulti-junction solar cellSentaurus TCAD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:409
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
隨著人類生活的進步,對於能源的需求也不斷的提升。然而在地球的資源逐漸枯竭下,許多不同的替代能源開始發展。在這些替代能源之中,太陽能是最有希望成為未來替代能源技術之一。
此論文利用Sentaurus TCAD太陽電池模擬軟體,分別對於單層非晶矽太陽電池、單層微晶矽太陽電池,與多層堆疊式太陽電池進行模擬。由於微晶矽太陽電池材料中具有晶界的存在,故在模擬中導入了晶界設定,以求更接近事實。為了使得太陽電池吸收更寬的太陽頻譜,因此發展了多層堆疊式太陽電池。經由獲得適當的電流匹配點,將可減少製程上的生產成本,因此在本研究中將會探討堆疊式太陽電池中的最佳電流匹配點。非晶矽/微晶矽堆疊式太陽電池中的下電池之微晶矽太陽電池對於近紅外光波段的吸收尚嫌不足,為了補償這部分的缺點,必須使用能隙更低的材料。在本研究中選擇使用鍺材料,當作三接面太陽電池的下層電池。鍺材料的能隙為0.66 eV,因此可以有效的吸收近紅外光。模擬結果指出:二接面太陽電池之短路電流密度為11.69 mA/cm2,開路電壓為1.50 V、三接面太陽電池之短路電流密度為11.30 mA/cm2,開路電壓為1.69 V。由於鍺的導入增加了整體太陽電池的開路電壓,使得原先的非晶/微晶矽堆疊式太陽電池的光電轉換效率,由10.59 %,提升至12.7 %。

As the quality of life improves, the demand of energy sources of human beings also increases. However, due to the massive consumption of current energy sources on the earth, many different types of renewable energy sources have been developed. Among all the renewable projects in progress, solar energy is the most promising as a future energy technology, because it is the most abundant energy source.
In this thesis, we have investigated single junction amorphous solar cells, single junction microcrystalline solar cells, and multi-junction solar cells by the computer simulation tool, Sentaurus TCAD. For an accurate simulation of microcrystalline solar cells, the simulation model considered the grain boundary. In order to absorb wider spectrum of the sun, the concept of multi-junction solar cell was introduced. For reducing the production cost of the manufacturing process, a suitable current matching point is necessary. In the micromorph solar cell, the infrared absorption of microcrystalline silicon is not strong enough. Therefore, adding another lower-bandgap material will compensate the drawback.
We used Ge material as the bottom sub-cell in the triple-junction solar cell. The band gap of Ge is 0.66 eV. Therefore, there is effective absorption of infrared in the triple-junction solar cell. In this study, the two junction cell achieved a Jsc of 11.69 mA/cm2, a Voc of 1.50 V, and an efficiency of 10.59 %. Meanwhile, the triple junction achieved a Jsc of 11.30 mA/cm2, a Voc of 1.69 V, and an efficiency of 12.7 %. The results clearly indicated that an additional Ge layer could enhance the Voc of tandem solar cells.

致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 8
1.4 論文架構 9
第二章 文獻探討 15
2.1 非晶矽太陽電池 15
2.2 微晶矽太陽電池 23
2.3 非晶矽/微晶矽堆疊式太陽電池 29
第三章 太陽電池理論與機制 39
3.1 光伏特效應 39
3.2 載子復合機制 42
3.2.1 輻射復合 42
3.2.2 復合中心復合 44
3.2.3 歐歇復合 45
3.2.4 表面復合 45
3.3 穿隧效應機制 46
第四章 模擬模型設計 49
4.1 前言 49
4.2 單層非晶矽太陽電池模型 51
4.3 單層微晶矽太陽電池模型 53
4.4 非晶矽/微晶矽堆疊式太陽電池模型 55
4.4.1 原版非晶矽/微晶矽堆疊式太陽電池模型 55
4.4.2 二版非晶矽/微晶矽堆疊式太陽電池模型 56
4.4.3 三版非晶矽/微晶矽堆疊式太陽電池模型 57
4.5非晶矽/微晶矽/鍺三接面堆疊式太陽電池模型 58
第五章 模擬結果與討論 61
5.1 氫化非晶矽太陽電池 61
5.2 氫化微晶矽太陽電池 65
5.3 非晶矽/微晶矽堆疊式太陽電池 69
5.4 非晶矽/微晶矽/鍺三接面太陽電池 75
第六章 總結與未來研究方向 79
6.1 總結 79
6.2 未來研究方向 80
參考文獻 81


[1-1] http:// www.nmns.edu.tw/.
[1-2] http://www.newenergy.org.cn/html/0068/2006816_11458.html
[1-3] C. Hu, and R.M. White, “Solar Cells: From Basic to Advanced Systems,” McGraw-Hill, New York, 1983.
[1-4] http://www.nrel.gov/.
[1-5] E. Iwaniczko, Y. Xu, R.E.I. Schropp, A.H. Mahan, “Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD,” Thin Solid Films, Vol. 430, 2003, p.212.
[1-6] K.F. Feenstra, R.E.I. Schropp, W.F. van der Weg, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition,” J. Appl. Phys., Vol. 85, 1999, p. 6843.
[1-7] R.W. Collins and A.S. Ferlauto et al., “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry,” Solar Energy Materials & Solar Cells, Vol. 78, 2003, p. 143.
[1-8] K. C. Park, D. Y. Ma, and K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering,” Thin Solid Films, Vol 305, 1997, p.201.
[1-9] K. H. Kim, K. C. Park, and D. Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys., Vol 81, 1997, p.7764.
[1-10] K. Ellmer, “Resistivity of polycrystalline zinc oxide films: current status and physical limit,” J. Phys. D: Appl. Phys., Vol.34, 2001, p.3097.
[1-11] http://www.pv.kaneka.co.jp/why/index.html.
[1-12] http://www.materialsnet.com.tw/DocView.aspx?id=8238
[1-13] A. J. Lewis, “Use of hydrogenation in the study of the transport properties of amorphous germanium,” Phys. Rev. B, Vol. 14, 1976, p. 658.
[1-14] M. Burgelman et al., “Modeling Thin-film PV Devices,” Prog. Photovoltaics, Vol 12, 2004, p. 143.
[1-15] H. Zhu et al., “Application of AMPS-1D for solar cell simulation,” AIP Conf. Proc, Vol. 462, 1999, p. 309.
[1-16] P. A. Basore and D. A. Clugston, “PC1D Version 4 for windows: From analysis to design,” in 25th IEEE PVS, 1996, p. 377–381.
[1-17] D.A. Clugston, P.A. Basore, “PC1D Version 5: 32-bit solar cell modeling on personal computers,” in 26th IEEE PVS, 1997, p. 207–210.
[1-18] S. Williams and K. Varahramyan, “A new TCAD-based statistical methodology for the optimization and sensitivity analysis of semiconductor technologies,” IEEE Trans. Semicond. Manuf, Vol. 13, 2000, p.208.
[2-1] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett., Vol 28, 1976, p. 671.
[2-2] D. L. Stabler and C. R. Wronski, “Reversible conductivity changes in discharge -produced amorphous Si,” Appl. Phys. Lett., Vol. 31, 1977, p. 292.
[2-3] T. L. Chu. Shirley S, Chu. E. G. Byiander, and S. T. Ang, “ Reduced photoinduced degradation in chemical vapor deposited hydrogenated amorphous silicon films,” Appl. Phys. Lett., Vol 52, 1988, p. 807.
[2-4] Noboru Nakamur et al., “The Influence of the Si-H2 Bond on the Light-Induced Effect in a-Si Films and a-Si Solar Cells” Jpn. J. Appl. Phys., Vol. 28, 1989, pp. 1762.
[2-5] A. H. Mahan et al., “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys., Vol. 69, 1991, p. 6728.
[2-6] Yoshihiro Hamakawa et al., “New types of high efficiency solar cells based on a-Si,” Appl. Phys. Lett., Vol. 43, 1983, p. 644.
[2-7] J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett., Vol. 70, 1997, p. 2975.
[2-8] J. Meier, FL Fliickiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell-Crystalline or amorphous cell behavior ?” Appl. Phys. Lett., Vol. 65, 1994, p. 860.
[2-9] R. Fliickiger, J. Meier, M. Goetz;and A. Shah, “Electrical properties and degradation kinetics of compensated hydrogenated microcrystalline silicon deposited by very high-frequency-glow discharge,” Appl. Phys. Lett., Vol. 77, 1995, p. 712.
[2-10] P. Torres et al., “Device grade microcrystalline silicon owing to reduced oxygen contamination,” Appl. Phys. Lett., Vol. 69, 1996, p. 1373.
[2-11] M. N. van den Donker et al., “Highly efficient microcrystalline silicon solar cells deposited from a pure SiH4 flow,” Appl. Phys. Lett., Vol. 87, 2005, p. 263503.
[2-12] Y. Mai et al., “Microcrystalline silicon solar cells deposited at high rates,” J. Appl. Phys., Vol. 97, 2005, p. 114913.
[2-13] J. Meier et al., “Towards high-efficiency thin-film silicon solar cell with the micromorph concept,” Solar Energy Materials & Solar cells, Vol. 49, 1997, p. 35.
[2-14] J. Meier et al., “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films, Vol. 451-452, 2004, p.518.
[2-15] P. Buehlmann et al., “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett., Vol. 91, 2007, pp. 143505.
[2-16] T. Söderström et al., “Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells,” Appl. Phys. Lett., Vol. 94, 2009, p. 063501.
[3-1] http:// pveducation.org/pvcdrom/manufacturing/first-photovoltaic-devices
[3-2] M. Vukadinovic et al., “Transport in tunneling recombination junctions: A combined computer simulation study,” J. Appl. Phys., Vol. 96, 2004, p. 7289.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top