|
[1] Toro E.F., “Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 2009. [2] Sod G.A., “A Survey of Serval Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws, J. Comp. Phys., Vol. 27, pp. 1-31, 1978. [3] C ̌ada M. and Torrilhon M., “Compact Third-Order Limiter Functions for Finite Volume Methods, J. Comp. Phys., Vol. 228, pp. 4118-4145, 2009. [4] Schulz-Rinne C.W., Collins J.P., and H.M. Glaz, “Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics, SIAM J. Sci Compt., Vol. 14, pp. 1394-1414, 1993. [5] LeVeque R.J., “Wave Propagation Algorithms for Multidimensional Hyperbolic Systems, J. Comp. Phys., Vol. 131, pp. 327-353, 1997. [6] Ferguson A., Smith M.R. and Wu J.-S., “Accurate True Direction Solutions to the Euler Equations Using a Uniform Distribution Equilibrium Method, CMES: Computer Modeling in Engineering & Sciences, Vol. 63, No. 1, 2010. [7] Macrossan M.N., “The Equilibrium Flux Method for the Calculation of Flows with Non-equilibrium Chemical Reactions, J, Comp. Phys., Vol. 80, pp. 204-231., 1989. [8] Roe P.L., “Characteristic-Based Schemes for the Euler Equations, Ann. Rev. Fluid Mech. Vol. 18, pp. 337-365, 1986. [9] Van Leer B., “Towards the Ultimate Conservative Difference Scheme III. Upstream-Centered Finite-Difference Schemes for Ideal Compressible Flow, J. Comp. Phys., Vol. 23, Issue 3, pp. 263-275, 1977. [10] Su C.-C., Smith M.R., Kuo F.-A., Wu J.-S., Hsieh C.-W., Tseng K.-C., “Large-scale simulations on multiple Graphics Processing Units (GPUs) for the direct simulation Monte Carlo method, J. Comp. Phys., Vol. 231, pp. 7932-7958, 2012. [11] Chen Y.-C., Smith M.R., Ferguson A., “Analysis of the Second Order Accurate Uniform Equilibrium Flux Method and its graphics processing unit acceleration, Journal of Computers and Fluids, 110: pp. 9-18, 2015. [12] Versteeg H.K., Malalaserkera W., “An introduction to computational fluid dynamics The finite volume method, Longman Scientific & Technical, 1995. [13] Cebeci T., Shao J.P., Kafyeke F. and Laurendeau E., “Computational Fluid Dynamics for Engineers From Panel to Navier-Stokes Methods with Computer Programs. Horizons Publishing Inc., California, 2005. [14] C ̌ada M. and Torrilhon M., “Compact Third-Order Limiter Functions for Finite Volume Methods, J. Comp. Phys., Vol. 288, pp. 4118-4145, 2009. [15] Hirsch, Charles. “Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics: The Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 2007. [16] Smith M.R., “The True Direction Equilibrium Flux Method and its Application, The University of Queensland, 2008. [17] Pullin D.I., “Direct Simulation Methods for Compressible Inviscid Ideal-Gas Flow, J. Comp. Phys., Vol. 34, pp. 231-244, 1980. [18] Rusanov V.V., “The Calculation of the Interaction of Non-stationary Shock Waves and Obstacles, J. Comput. Math. Phys. USSR, Vol. 1, pp. 267-279, 1961. [19] Smith M.R., Macrossan M.N. and Abdel-jawad M.M., “Effects of Direction Decoupling in Flux Calculation in Euler Solvers, J. Comp. Phys., Vol. 227, pp. 4142-4161, 2008. [20] Harten A., “High Resolution Schemes for Hyperbolic Conservation Laws , J. Comp. Phys., Vol. 49, pp. 357-393, 1983. [21] Smith M.R., “Introduction to GPU and Multi-Core Computation, 2014. [22] Amdahl G.M., “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities, AFIPS Conference Proceedings, Vol. 30, pp. 483-485, 1967. [23] Gustafson J.L., “Reevaluating Amdahl’s Law, Communications of the ACM, Vol. 31, Number 5, pp. 532-533, 1988. [24] Sweby P.K., “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws, SIAM J. Numer. Anal., Vol. 21, pp. 995-1011, 1984. [25] Lax P.D. and Wendroff B., “Systems of Conservation Laws, Comm. Pure Appl. Math., Vol. 13, pp. 217-237, 1960. [26] Van Leer B., “Towards the Ultimate Conservative Difference Scheme II. Monotonicity and Conservation Combined in a Second Order Scheme, J. Comp. Phys., Vol. 14, pp. 361-370, 1974. [27] Pacheco, Peter S. “Parallel programming with MPI. Morgan Kaufmann, 1997. [28] Hwang, Kai, Jack Dongarra, and Geoffrey C. Fox. Distributed and cloud computing: from parallel processing to the internet of things. Morgan Kaufmann, 2013. [29] Benzi, John; Damodaran, M., “Parallel Three Dimensional Direct Simulation Monte Carlo for Simulating Micro Flows. Parallel Computational Fluid Dynamics 2007: Implementations and Experiences on Large Scale and Grid Computing. Parallel Computational Fluid Dynamics. Springer. p. 95.
|