跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/08 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳心渝
論文名稱:以密閉式藻類毒性試驗研究α,β-不飽和酯類-丙烯酸酯類及甲基丙烯酸酯類之定量結構-活性關係
論文名稱(外文):Toxicity and quantitative structure-activity relationships of α,β-unsaturated acrylates and methacrylate evaluated using a closed-system algal testing technique
指導教授:陳重元Chung-Yuan Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:98
中文關鍵詞:月芽藻親電性穀胱甘肽反應性定量結構-活性關係
外文關鍵詞:α,β-unsaturated eastersPseudokirchneriellareactivityglutathioneQSAR
相關次數:
  • 被引用被引用:1
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究以月芽藻為試驗物種進行密閉式藻類毒性試驗,以溶氧變化量(ΔDO)、最終細胞產量(Final Yield)及生長率(Growth Rate)為反應終點,評估親電性物質-α,β-不飽和酯類(丙烯酸酯類及甲基丙烯酸酯類)之毒性,並以穀胱甘肽(GSH, Glutathione)為親核示劑,與化合物進行反應性試驗,以求得之反應常數kGSH,與log kOW探討對毒性之影響,並建立定量結構-活性關係(QSAR, Quantitative Structure-Activity Relationship)。

試驗結果中以反應終點Final Yield最為敏感,與其他試驗物種比較亦如此。由QSAR之結果顯示,甲基丙烯酸酯類(扣除反應性高甲基丙烯酸乙烯酯)以log kOW為參數適合度最佳,r2(adj)、Q2分別為0.864~0.941及0.810~0.893;丙烯酸酯(丙烯酸酯類與甲基丙烯酸酯類)以log kOW與log kGSH為參數適合度最佳,r2(adj)、Q2分別為0.885~0.895及0.823~0.835,移除Outlier(log kOW為負值之2-Hydroxyethyl acrylate)後之r2(adj)、Q2分別提升為0.914~0.935及0.879~0.923。而以藻類毒性預測鰷魚毒性之r2(adj)、Q2分別為0.808~0.815及0.688~0.692,預測纖毛蟲毒性之r2(adj)、Q2分別為0.714~0.787及0.645~0.752。
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 viii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻回顧 4
2.1 丙烯酸酯之介紹 4
2.1.1 基本特性 4
2.1.2 應用 7
2.1.3 毒理性質 7
2.2 定量結構-活性關係(QSAR) 10
2.2.1 起源 10
2.2.2 毒性作用機制 11
2.2.3 反應性-親電性作用機制 12
2.2.4 丙烯酸酯之QSAR 13
2.2.5 QSAR建立之必要條件 16
2.3 藻類毒性試驗 17
2.3.1 月芽藻之介紹 17
2.3.2 藻類生長測定方法 18
2.3.3 藻類毒性試驗方法 18
2.3.4 試驗中之重要參數 20
第三章 基本原理 23
3.1 基本生長動力學 23
3.2 毒性物質之濃度反應關係模式 25
第四章 材料與方法 26
4.1 實驗設備與材料 26
4.2 實驗方法 30
4.2.1 藻類毒性試驗 30
4.2.2 化學反應性試驗 36
4.2.3 實驗數據之處理 38
第五章 結果與討論 40
5.1 藻類毒性試驗 40
5.1.1 毒性結果與風險評估 40
5.1.2 低濃度之影響及比較 42
5.1.3 與其他試驗物種之比較 45
5.2 反應性試驗 53
5.3 反應性及疏水性對毒性之影響 55
5.3.1 基線毒性 55
5.3.2 化學結構、反應性及疏水性與毒性之關係 58
5.4 QSAR模式之建立 62
5.4.1 參數選用 62
5.4.2 疏水性參數 63
5.4.3 反應性參數及其他參數 64
第六章 結論與建議 69
6.1 結論 69
6.2 建議 70
參考文獻 71
附錄一 藻類毒性試驗結果 78
附錄二 反應性試驗結果 96
1. Organization for Economic Cooperation and Development (OECD) (2009) The 2007 OECD list of High Production Volume chemicals.
2. Koleva, Y.K., Madden, J.C. and Cronin, M.T.D. (2008) Formation of categories from structure-activity relationships to allow read-across for risk assessment: toxicity of alpha,beta-unsaturated carbonyl compounds. Chem. Res. Toxicol. 21, 2300-2312.
3. Schultz, T.W., Netzeva, T.I., Roberts, D.W. and Cronin, M.T.D. (2005) Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals. Chem. Res. Toxicol. 18, 330-341.
4. Karabunarliev, S., Mekenyan, O.G., Karcher, W., Russom, C.L. and Bradbury, S.P. (1996) Quantum-chemical descriptors for estimating the acute toxicity of electrophiles to the fathead minnow (Pimephales promelas): An analysis based on molecular mechanisms. Quant. Struct.-Act. Relat. 15, 302-310.
5. Russom, C.L., Drummond, R.A. and Hoffman, A.D. (1988) Acute toxicity and behavioral effects of acrylates and methacrylates to juvenile fathead minnows. Bull. Environ. Contam. Toxicol. 41, 589-596.
6. Cronin, M.T.D., Netzeva, T.I., Dearden, J.C., Edwards, R. and Worgan, A.D.P. (2004) Assessment and modeling of the toxicity of organic chemicals to Chlorella vulgaris: Development of a novel database. Chem. Res. Toxicol. 17, 545-554.
7. Xia, B.B., Liu, K.P., Gong, Z.G., Zheng, B., Zhang, X.Y. and Fan, B.T. (2009) Rapid toxicity prediction of organic chemicals to Chlorella vulgaris using quantitative structure-activity relationships methods. Ecotoxicol. Environ. Saf. 72, 787-794.
8. 黃祥瑞(2000)。以光合作用為反應參數之藻類毒性實驗設計。國立交通大學環境工程研究所碩士學位論文。
9. 林瑞合(2001)。BOD瓶之藻類毒性設計。國立交通大學環境工程研究所碩士學位論文。
10. Papa, E., Battaini, F. and Gramatica, P. (2005) Ranking of aquatic toxicity of esters modelled by QSAR. Chemosphere 58, 559-570.
11. Aptula, A.O. and Roberts, D.W. (2006) Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: General principles and application to reactive toxicity. Chem. Res. Toxicol. 19, 1097-1105.
12. Staples, C.A., Murphy, S.R., McLaughlin, J.E., Leung, H.W., Cascieri, T.C. and Farr, C.H. (2000) Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters. Chemosphere 40, 29-38.
13. 張承明、歐新榮(2007)。抑制劑對丙烯酸酯安全儲存溫度之影響。勞工安全衛生研究季刊,11期,369-379頁。
14. United States Environmental Protection Agency (U.S. EPA) (2009) EPISuiteTM. Estimation Program Interface (EPI) Suite Version 4.0.
15. Organization for Economic Cooperation and Development (OECD) (2008) (Q)SAR Application Toolbox Version 1.1.
16. Staples, C.A., Farr, C., Hunt, E.K., McLaughlin, J.E., Mullerschon, H. and Pemberton, M.A. (2009) Using quantitative structure-activity relationships to support the assessment of the environmental fate and aquatic toxicity of a series of methacrylic acid esters. Hum. Ecol. Risk Assess. 15, 503-525.
17. 蘇韋欣(2005)。反應性蒸餾程序生產丙烯酸乙酯之研究。國立台灣科技大學化學工程系碩士學位論文。
18. 台塑關係企業(2008)。企業社會責任報告。
19. Chan, K. and O'Brien, P.J. (2008) Structure-activity relationships for hepatocyte toxicity and electrophilic reactivity of alpha,beta-unsaturated esters, acrylates and methacrylates. J. Appl. Toxicol. 28, 1004-1015.
20. Greim, H., Ahlers, J., Blas, R., Broecker, B., Hollander, H., Gelbke, H.P., Jacobi, S., Klimisch, H.J., Mangelsdorf, I., Mayr, W., Schon, N., Stropp, G., Stahnecker, P., Vogel, R., Weber, C., Zieglerskylakakis, K., and Bayer, E. (1995) Assessment of structurally related chemicals: Toxicity and ecotoxicity of acrylic acid and acrylic acid alkyl esters (acrylates), methacrylic acid and methacrylic acid alkyl esters (methacrylates). Chemosphere 31, 2637-2659.
21. 維基百科 (2009):http://zh.wikipedia.org/zh-tw/File:Glutathione-skeletal.png
22. Fahey, R.C., Buschbacher, R.M. and Newton, G.L. (1987) The evolution of glutathione metabolism in phototrophic microorganisms. J. Mol. Evol. 25, 81-88.
23. Ahner, B.A., Wei, L.P., Oleson, J.R. and Ogura, N. (2002) Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress. Mar. Ecol. Prog. Ser. 232, 93-103.
24. Freidig, A.P. and Hermens, J.L.M. (2001) Narcosis and chemical reactivity QSARs for acute fish toxicity. Quant. Struct.-Act. Relat. 19, 547-553.
25. Yarbrough, J.W. and Schultz, T.W. (2007) Abiotic sulfhydryl reactivity: A predictor of aquatic toxicity for carbonyl-containing alpha,beta-unsaturated compounds. Chem. Res. Toxicol. 20, 558-562.
26. Ren, S.J., Frymier, P.D. and Schultz, T.W. (2003) An exploratory study of the use of multivariate techniques to determine mechanisms of toxic action. Ecotoxicol. Environ. Saf. 55, 86-97.
27. Ministry of the Environment (MOE) (2010) Results of Eco-toxicity tests of chemicals conducted by Ministry of the Environment in Japan. .
28. Crum-Brown, A. and Fraser, T. (1868-9) On the connection between chemical constitution and physiological action. Part 1. On the physiological action of the ammonium bases, derived from Strychia, Brucia, Thebaia, Codeia, Morphia and Nicotia. Trans. R. Soc. Edinburgh 25, 151-203.
29. Meyer, H. (1899) On the theory of alcohol narcosis I. Which property of anesthetics gives them their narcotic activity. Arch. Exper. Pathol. Pharmakol. 42, 109-118.
30. Overton, E. (1899) Vierteljahrsschr. Naturforsch. Ges. Zurich 44, 88.
31. Livingstone, D. (1995) Data analysis for chemists: Applications to QSAR and chemical product design. Oxford University Press.
32. Abernethy, S.G., Mackay, D. and McCarty, L.S. (1988) Volume fraction correlation for narcosis in aquatic organisms: the key role of partitioning. Environ. Toxicol. Chem. 7, 469-481.
33. Cronin, M.T.D. and Schultz, T.W. (1996) Structure-toxicity relationships for phenols to Tetrahymena pyriformis. Chemosphere 32, 1453-1468.
34. Mekenyan, O.G. and Veith, G.D. (1993) Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity. SAR QSAR Environ. Res. 1, 335-344.
35. Russom, C.L., Bradbury, S.P., Broderius, S.J., Hammermeister, D.E. and Drummond, R.A. (1997) Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 16, 948-967.
36. Hermens, J.L.M. (1990) Electrophiles and acute toxicity to fish. Environ. Health Perspect. 87, 219-225.
37. Schultz, T.W., Carlson, R.E., Cronin, M.T.D., Hermens, J.L.M., Johnson, R., O'Brien, P.J., Roberts, D.W., Siraki, A., Wallace, K.B. and Veith, G.D. (2006) A conceptual framework for predicting the toxicity of reactive chemicals: modeling soft electrophilicity. SAR QSAR Environ. Res. 17, 413-428.
38. Bӧhme, A., Thaens, D., Paschke, A. and Schüürmann, G. (2009) Kinetic glutathione chemoassay to quantify thiol reactivity of organic electrophiles-application to alpha,beta-unsaturated ketones, acrylates, and propiolates. Chem. Res. Toxicol. 22, 742-750.
39. Schultz, T.W. and Cronin, M.T.D. (2003) Essential and desirable characteristics of ecotoxicity quantitative structure-activity relationships. Environ. Toxicol. Chem. 22, 599-607.
40. National BioResource Project. (2009) : http://www.shigen.nig.ac.jp/algae/images/strainsimage/nies-0035.jpg
41. Rojickova-Padrtova, R., Marsalek, B. and Holoubek, I. (1998) Evaluation of alternative and standard toxicity assays for screening of environmental samples: Selection of an optimal test battery. Chemosphere 37, 495-507.
42. Chao, M.R. and Chen, C.Y. (2000) No-observed-effect concentrations in batch and continuous algal toxicity tests. Environ. Toxicol. Chem. 19, 1589-1596.
43. United States Environmental Protection Agency (U.S. EPA) (1996) Ecological Effect Test Guidelines. OPPTS 850.5400. Algal Toxicity, Tiers I and II.
44. Organization for Economic Cooperation and Development (OECD) (1984) Guideline for testing chemicals. No. 201. Alga growth inhibition test. Paris, France.
45. International Organization for Standardization (ISO) (1987) Water quality- Algal growth inhibition test. Draft International Standard ISO/DIS 8692. Geneva, Switzerland.
46. American Society for Testing and Materials (ASTM) (1994) Standard Guide for Conducting Static 96h Toxicity Tests with Microalgae. Annual Book of ASTM Standards. ASTM E1218-90. Philadelphia, PA.
47. American Public Health Association (APHA) (1995) American Water Works Association and Water Pollution Control Federation, Toxicity testing with phytoplankton, in Standard Methods for Examination of Water and Wastewater, 19th edn, APHA, Washington, DC.
48. Hostetter, H.P. (1976) A rapid bioassay for algal nutrients and toxins. J. Phycol. 12, 10.
49. Chen, C.Y. (1989) The effects of limiting nutrient to algal toxicity assessment: A theoretical approach. Toxic. Assess. 4, 35-42.
50. Nyholm, N. and Kallqvist, T. (1989) Methods for growth inhibition toxicity tests with freshwater algae. Environ. Toxicol. Chem. 8, 689-703.
51. Chen, C.Y. and Lin, K.C. (1997) Optimization and performance evaluation of the continuous algal toxicity test. Environ. Toxicol. Chem. 16, 1337-1344.
52. Lin, J.H., Kao, W.C., Tsai, K.P. and Chen, C.Y. (2005) A novel algal toxicity testing technique for assessing the toxicity of both metallic and organic toxicants. Water Res. 39, 1869-1877.
53. Vasseur, P., Pandard, P. and Burnel, D. (1988) Influence of some experimental factors on metal toxicity to Selenastrum capricornutum. Toxic. Assess. 3, 331-343.
54. Bergers, P.J.M. and Degroot, A.C. (1994) The analysis of EDTA in water by HPLC. Water Res. 28, 639-642.
55. Mazidji, C.N., Koopman, B., Bitton, G. and Neita, D. (1992) Distinction between heavy metal and organic toxicity using EDTA chelation and microbial assays. Environ. Toxicol. water Qual. 7, 339-353.
56. Schultz, T.W., Yarbrough, J.W. and Johnson, E.L. (2005) Structure-activity relationships for reactivity of carbonyl-containing compounds with glutathione. SAR QSAR Environ. Res. 16, 313-322.
57. Freidig, A.P., Verhaar, H.J.M. and Hermens, J.L.M. (1999) Quantitative structure-property relationships for the chemical reactivity of acrylates and methacrylates. Environ. Toxicol. Chem. 18, 1133-1139.
58. Stewart, J.J.P. (2009) MOPAC 2009TM. Stewart Computational Chemistry. Colorado Springs, CO, USA
59. Faucon, J.C., Bureau, R., Faisant, J., Briens, F. and Rault, S. (1999) Ecotoxicological endpoints in European notification procedure impact on the classification for the aquatic environment. Chemosphere 38, 2849-2863.
60. Aptula, A.O., Patlewicz, G., Roberts, D.W. and Schultz, T.W. (2006) Non-enzymatic glutathione reactivity and in vitro toxicity: A non-animal approach to skin sensitization. Toxicol. in Vitro 20, 239-247.
61. Hsieh, S.H., Hsu, C.H., Tsai, D.Y. and Chen, C.Y. (2006) Quantitative structure-activity relationships for toxicity of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 25, 2920-2926.
62. Tsai, K.P. and Chen, C.Y. (2007) An algal toxicity database of organic toxicants derived by a closed-system technique. Environ. Toxicol. Chem. 26, 1931-1939.
63. Verhaar, H.J.M., Solbe, J., Speksnijder, J., van Leeuwen, C.J. and Hermens, J.L.M. (2000) Classifying environmental pollutants: Part 3. External validation of the classification system. Chemosphere 40, 875-883.
64. Schultz, T.W. and Yarbrough, J.W. (2004) Trends in structure-toxicity relationships for carbonyl-containing alpha,beta-unsaturated compounds. SAR QSAR Environ. Res. 15, 139-146.
65. Dailey, B.P. and Shoolery, J.N. (1955) The electron withdrawal power of substituent groups. J. Am. Chem. Soc. 77, 3977-3981.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top