跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃亦君
研究生(外文):Yi-Chun Huang
論文名稱:探討 COP 9 複雜亞單位將果蠅蛻皮激素時間軸訊號轉化為果蠅神神經發育位置決定的機制
論文名稱(外文):The COP9 Signalosome Converts Temporal Hormone Signaling to Spatial Restriction on Neural Competence
指導教授:簡正鼎簡正鼎引用關係皮海薇
指導教授(外文):Cheng-Ting ChienHaiwei Pi
口試委員:鍾邦柱張純純吳君泰皮海薇簡正鼎
口試委員(外文):Bon-Chu ChungChuen-Chuen JangJune-Tai WuHaiwei PiCheng-Ting Chien
口試日期:2014-11-28
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:81
中文關鍵詞:COP 9 複雜亞單位神經發育蛻皮激素
外文關鍵詞:COP9 signalosomeneural developmentecdysone signaling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在神神經發育過程中,由於綜合了了位置上與時機上的調控,而確定了了哪些細胞具有 形成神神經細胞的潛力力。感受外界訊號的果蠅感覺器官剛毛可以接受機械性及化學 性的刺刺激,並排列列整齊。在翅膀前緣,有神神經連連結的剛毛整齊排列列,而在翅膀後 緣則是排列列著無神神經連連結的剛毛。我們發現在翅膀後緣,COP9 複雜亞單位 (CSN) 抑制了了神神經細胞潛力力而使得最終形成無神神經剛毛。在 CSN 的突變中,翅膀後緣 的剛毛細胞會因為神神經決定因子— Senseless (Sens)的持續表達,而轉變成為有神神 經連連結的剛毛。CSN 抑制 Sens 的功能是透過抑制了了蛻皮激素訊號傳遞鏈的下游 基因 BR-Z1 轉錄錄因子的表達,而 BR-Z1 則會活化 Sens。特別的是,CSN 抑制 BR-Z1 的功能是從果蠅的前蛹時期轉變為蛹時期才開始,造成 Sens 在這時才開始下降降 並終止翅膀後緣神神經細胞的發育潛力力。而我們發現到,蛻皮激素訊號傳遞鏈在前 蛹時期轉變為蛹時期之後會抑制 br 表達,這和之前已知的蛻皮激素訊號傳遞鏈 會活化 br 的傳統調控相反。且這樣的抑制是需要 CSN deneddylation 的活性及其 目標蛋白--多種的 Cullin。而我們也發現到多個 CSN 子單位會和蛻皮激素的受體 (EcR)交互作用並且抑制 br 的轉錄錄。我們提出了了模型指出荷爾蒙受體 EcR 會和 CSN deneddylation 機轉共同作用,並適時的降降低其下游基因表達,確保在特定的 翅膀後緣區域抑制神神經細胞發育的潛力力。
During development, neural competence is conferred and maintained by integrating spatial and temporal regulations. The Drosophila sensory bristles that detect mechanical and chemical stimulations are arranged in stereotypical positions. The anterior wing margin (AWM) is arrayed with neuron-innervated sensory bristles while posterior wing margin (PWM) bristles are non-innervated. We found that the COP9 signalosome (CSN) suppresses the neural competence of non-innervated bristles at the PWM. In CSN mutants, PWM bristles are transformed into neuron-innervated, which is attributed to sustained expression of the neural-determining factor Senseless (Sens). The CSN suppresses Sens through repression of the ecdysone signaling target gene broad (br) that encodes the BR-Z1 transcription factor to activate sens expression. Strikingly, CSN suppression of BR-Z1 is initiated at the prepupa-to-pupa transition, leading to Sens downregulation, and termination of the neural competence of PWM bristles. The role of ecdysone signaling to repress br after the prepupa-to-pupa transition is distinct from its conventional role in activation, and requires CSN deneddylating activity and multiple cullins, the major substrates of deneddylation. Several CSN subunits physically associate with ecdysone receptors to represses br at the transcriptional level. We propose a model in which nuclear hormone receptors cooperate with the deneddylation machinery to temporally shutdown downstream target gene expression, conferring a spatial restriction on neural competence at the PWM.
Abbreviation ...................................................................................................................... III 中文摘要 ............................................................................................................................ IV
Abstract................................................................................................................................V
Introduction ..........................................................................................................................1
The external sensory organ in Drosophila...........................................................................1 The temporal ecdysone signaling ........................................................................................3 Ecdysone signaling and neural development .......................................................................4 The COP9 signalosome ......................................................................................................5 The COP9 signalosome on neural development and hormone signaling dependent transcriptional regulation ....................................................................................................6
Material and Methods ..........................................................................................................8
Fly strains and genetics.......................................................................................................8 Immunofluorescence staining ...........................................................................................10 Quantification of staining intensity ...................................................................................12 Cell culture and plasmid construction ...............................................................................12 S2 cells immunofluorescence staining...............................................................................13 Charcoal stripping of FBS and 20E treatment ...................................................................13 Co-immunoprecipitation ...................................................................................................13 Chromatin immunoprecipitation .......................................................................................14 RT-PCR............................................................................................................................14
Results .................................................................................................................................16
Bristle missing and cell fate transformation in CSN mutants .............................................16 Transformation of PWM bristles into innervated sensory bristles in CSN mutants.............17 The CSN suppresses Sens independent of proneural genes ac and sc ................................18 The CSN downregulates Engrailed in pupal wing discs.....................................................19 The CSN does not regulate apoptosis in wing tissues ........................................................20 Sens accumulation is induced by BR-Z1 upregulation in CSN mutant cells.......................20 CSN regulation of BR-Z1 and Sens levels is time-dependent ............................................21 Developmental program of AWM and PWM bristles in CSN mutants...............................23 Ecdysone receptor represses BR-Z1 after the prepupa-to-pupa transition ..........................23 CSN subunits associate with EcR to repress br transcription.............................................24
I
Nedd8 and multiple cullins are required to suppress BR-Z1 and Sens expressions ............26 Conclusion .......................................................................................................................27
Discussion............................................................................................................................28
Suppression of neural competence of non-innervated bristle at the PWM..........................28 Restricted neural formation at wing margin in CSN mutants .............................................30 ES organs on the notum and on the AWM ........................................................................30 Switch from activation to repression of ecdysone signaling target genes requires CSN deneddylation activity.......................................................................................................31 Multiple cullins that involved in br-Z1 inhibition..............................................................33 Possible candidates in the ecdysone dependent transition of CSN activity at pupal stage...33
References ...........................................................................................................................35 Figures and Figure Legends...............................................................................................46 Appendix.............................................................................................................................76
Baehrecke, E.H. (2000). Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ 7, 1057-1062.
Bai, J., Uehara, Y., and Montell, D.J. (2000). Regulation of invasive cell behavior by taiman, a Drosophila protein related to AIB1, a steroid receptor coactivator amplified in breast cancer. Cell 103, 1047-1058.
Bayer, C.A., Holley, B., and Fristrom, J.W. (1996). A switch in broad-complex zinc-finger isoform expression is regulated posttranscriptionally during the metamorphosis of Drosophila imaginal discs. Dev Biol 177, 1-14.
Bayer, C.A., von Kalm, L., and Fristrom, J.W. (1997). Relationships between protein isoforms and genetic functions demonstrate functional redundancy at the Broad-Complex during Drosophila metamorphosis. Dev Biol 187, 267-282.
Bech-Otschir, D., Kraft, R., Huang, X., Henklein, P., Kapelari, B., Pollmann, C., and Dubiel, W. (2001). COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J 20, 1630-1639.
Bellaiche, Y., Gho, M., Kaltschmidt, J.A., Brand, A.H., and Schweisguth, F. (2001). Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nat Cell Biol 3, 50-57.
Belyaeva, E.S., Aizenzon, M.G., Semeshin, V.F., Kiss, II, Koczka, K., Baritcheva, E.M., Gorelova, T.D., and Zhimulev, I.F. (1980). Cytogenetic analysis of the 2B3-4--2B11 region of the X-chromosome of Drosophila melanogaster. I. Cytology of the region and mutant complementation groups. Chromosoma 81, 281-306.
Belyaeva, E.S., Vlassova, I.E., Biyasheva, Z.M., Kakpakov, V.T., Richards, G., and Zhimulev, I.F. (1981). Cytogenetic analysis of the 2B3-4-2B11 region of the X chromosome of Drosophila melanogaster. II. Changes in 20-OH ecdysone puffing caused by genetic defects of puff 2B5. Chromosoma 84, 207-219.
Bond, N.D., Nelliot, A., Bernardo, M.K., Ayerh, M.A., Gorski, K.A., Hoshizaki, D.K., and Woodard, C.T. (2011). ssFTZ-F1 and Matrix metalloproteinase 2 are required for fat-body remodeling in Drosophila. Dev Biol 360, 286-296.
Caldwell, P.E., Walkiewicz, M., and Stern, M. (2005). Ras activity in the Drosophila prothoracic gland regulates body size and developmental rate via ecdysone release. Curr Biol 15, 1785-1795.
35
Calleja, M., Herranz, H., Estella, C., Casal, J., Lawrence, P., Simpson, P., and Morata, G. (2000). Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila. Development 127, 3971-3980.
Campuzano, S., Carramolino, L., Cabrera, C.V., Ruiz-Gomez, M., Villares, R., Boronat, A., and Modolell, J. (1985). Molecular genetics of the achaete-scute gene complex of D. melanogaster. Cell 40, 327-338.
Carbonell, A., Mazo, A., Serras, F., and Corominas, M. (2013). Ash2 acts as an ecdysone receptor coactivator by stabilizing the histone methyltransferase Trr. Mol Biol Cell 24, 361-372.
Chamovitz, D.A., Wei, N., Osterlund, M.T., von Arnim, A.G., Staub, J.M., Matsui, M., and Deng, X.W. (1996). The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 86, 115-121.
Chauchereau, A., Georgiakaki, M., Perrin-Wolff, M., Milgrom, E., and Loosfelt, H. (2000). JAB1 interacts with both the progesterone receptor and SRC-1. J Biol Chem 275, 8540-8548.
Chawla, G., and Sokol, N.S. (2012). Hormonal activation of let-7-C microRNAs via EcR is required for adult Drosophila melanogaster morphology and function. Development 139, 1788-1797.
Cherbas, L., Hu, X., Zhimulev, I., Belyaeva, E., and Cherbas, P. (2003). EcR isoforms in Drosophila: testing tissue-specific requirements by targeted blockade and rescue. Development 130, 271-284.
Couso, J.P., Bishop, S.A., and Martinez Arias, A. (1994). The wingless signalling pathway and the patterning of the wing margin in Drosophila. Development 120, 621-636.
Cubas, P., de Celis, J.F., Campuzano, S., and Modolell, J. (1991). Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev 5, 996-1008.
Davis, M.B., Carney, G.E., Robertson, A.E., and Bender, M. (2005). Phenotypic analysis of EcR-A mutants suggests that EcR isoforms have unique functions during Drosophila development. Dev Biol 282, 385-396.
DiBello, P.R., Withers, D.A., Bayer, C.A., Fristrom, J.W., and Guild, G.M. (1991). The Drosophila Broad-Complex encodes a family of related proteins containing zinc fingers. Genetics 129, 385-397.
36
Djagaeva, I., and Doronkin, S. (2009a). COP9 limits dendritic branching via Cullin3-dependent degradation of the actin-crosslinking BTB-domain protein Kelch. PLoS One 4, e7598.
Djagaeva, I., and Doronkin, S. (2009b). Dual regulation of dendritic morphogenesis in Drosophila by the COP9 signalosome. PLoS One 4, e7577.
Doronkin, S., Djagaeva, I., and Beckendorf, S.K. (2003). The COP9 signalosome promotes degradation of Cyclin E during early Drosophila oogenesis. Dev Cell 4, 699-710.
Dressel, U., Thormeyer, D., Altincicek, B., Paululat, A., Eggert, M., Schneider, S., Tenbaum, S.P., Renkawitz, R., and Baniahmad, A. (1999). Alien, a highly conserved protein with characteristics of a corepressor for members of the nuclear hormone receptor superfamily. Mol Cell Biol 19, 3383-3394.
Emery, I.F., Bedian, V., and Guild, G.M. (1994). Differential expression of Broad-Complex transcription factors may forecast tissue-specific developmental fates during Drosophila metamorphosis. Development 120, 3275-3287.
Fietz, M.J., Jacinto, A., Taylor, A.M., Alexandre, C., and Ingham, P.W. (1995). Secretion of the amino-terminal fragment of the hedgehog protein is necessary and sufficient for hedgehog signalling in Drosophila. Curr Biol 5, 643-650.
Francis, V.A., Zorzano, A., and Teleman, A.A. (2010). dDOR is an EcR coactivator that forms a feed-forward loop connecting insulin and ecdysone signaling. Curr Biol 20, 1799-1808.
Garcia-Bellido, A., and Santamaria, P. (1972). Developmental analysis of the wing disc in the mutant engrailed of Drosophila melanogaster. Genetics 72, 87-104.
Ghysen, A., Dambly-Chaudiere, C., Jan, L.Y., and Jan, Y.N. (1993). Cell interactions and gene interactions in peripheral neurogenesis. Genes Dev 7, 723-733.
Goto, S., and Hayashi, S. (1999). Proximal to distal cell communication in the Drosophila leg provides a basis for an intercalary mechanism of limb patterning. Development 126, 3407-3413.
Guittard, E., Blais, C., Maria, A., Parvy, J.P., Pasricha, S., Lumb, C., Lafont, R., Daborn, P.J., and Dauphin-Villemant, C. (2011). CYP18A1, a key enzyme of Drosophila steroid hormone inactivation, is essential for metamorphosis. Dev Biol 349, 35-45.
37
Guo, M., Jan, L.Y., and Jan, Y.N. (1996). Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27-41.
Gusmaroli, G., Figueroa, P., Serino, G., and Deng, X.W. (2007). Role of the MPN subunits in COP9 signalosome assembly and activity, and their regulatory interaction with Arabidopsis Cullin3-based E3 ligases. Plant Cell 19, 564-581.
Gustafson, K., and Boulianne, G.L. (1996). Distinct expression patterns detected within individual tissues by the GAL4 enhancer trap technique. Genome 39, 174-182.
Hartenstein, V., and Posakony, J.W. (1989). Development of adult sensilla on the wing and notum of Drosophila melanogaster. Development 107, 389-405.
Huet, F., Ruiz, C., and Richards, G. (1995). Sequential gene activation by ecdysone in Drosophila melanogaster: the hierarchical equivalence of early and early late genes. Development 121, 1195-1204.
Jafar-Nejad, H., Tien, A.C., Acar, M., and Bellen, H.J. (2006). Senseless and Daughterless confer neuronal identity to epithelial cells in the Drosophila wing margin. Development 133, 1683-1692.
Jang, A.C., Chang, Y.C., Bai, J., and Montell, D. (2009). Border-cell migration requires integration of spatial and temporal signals by the BTB protein Abrupt. Nat Cell Biol 11, 569-579.
Kanuka, H., Kuranaga, E., Takemoto, K., Hiratou, T., Okano, H., and Miura, M. (2005). Drosophila caspase transduces Shaggy/GSK-3beta kinase activity in neural precursor development. EMBO J 24, 3793-3806.
Karim, F.D., Guild, G.M., and Thummel, C.S. (1993). The Drosophila Broad-Complex plays a key role in controlling ecdysone-regulated gene expression at the onset of metamorphosis. Development 118, 977-988.
King-Jones, K., and Thummel, C.S. (2005). Nuclear receptors--a perspective from Drosophila. Nat Rev Genet 6, 311-323.
Kiss, I., Beaton, A.H., Tardiff, J., Fristrom, D., and Fristrom, J.W. (1988). Interactions and developmental effects of mutations in the Broad-Complex of Drosophila melanogaster. Genetics 118, 247-259.
38
Kiss, I., Bencze, G., Fodor, G., Szabad, J., and Fristrom, J.W. (1976). Prepupal larval mosaics in Drosophila melanogaster. Nature 262, 136-138.
Knowles, A., Koh, K., Wu, J.T., Chien, C.T., Chamovitz, D.A., and Blau, J. (2009). The COP9 signalosome is required for light-dependent timeless degradation and Drosophila clock resetting. J Neurosci 29, 1152-1162.
Koelle, M.R., Talbot, W.S., Segraves, W.A., Bender, M.T., Cherbas, P., and Hogness, D.S. (1991). The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67, 59-77.
Kuo, C.T., Jan, L.Y., and Jan, Y.N. (2005). Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc Natl Acad Sci U S A 102, 15230-15235.
Lee, T., Marticke, S., Sung, C., Robinow, S., and Luo, L. (2000). Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. Neuron 28, 807-818.
Lin, H.C., Wu, J.T., Tan, B.C., and Chien, C.T. (2009). Cul4 and DDB1 regulate Orc2 localization, BrdU incorporation and Dup stability during gene amplification in Drosophila follicle cells. J Cell Sci 122, 2393-2401.
Lu, B., Ackerman, L., Jan, L.Y., and Jan, Y.N. (1999). Modes of protein movement that lead to the asymmetric localization of partner of Numb during Drosophila neuroblast division. Mol Cell 4, 883-891.
Lu, B., Roegiers, F., Jan, L.Y., and Jan, Y.N. (2001). Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522-525.
Luke-Glaser, S., Roy, M., Larsen, B., Le Bihan, T., Metalnikov, P., Tyers, M., Peter, M., and Pintard, L. (2007). CIF-1, a shared subunit of the COP9/signalosome and eukaryotic initiation factor 3 complexes, regulates MEL-26 levels in the Caenorhabditis elegans embryo. Mol Cell Biol 27, 4526-4540.
Lyapina, S., Cope, G., Shevchenko, A., Serino, G., Tsuge, T., Zhou, C., Wolf, D.A., Wei, N., and Deshaies, R.J. (2001). Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292, 1382-1385.
39
Manning, L., and Doe, C.Q. (1999). Prospero distinguishes sibling cell fate without asymmetric localization in the Drosophila adult external sense organ lineage. Development 126, 2063-2071.
Milan, M., Diaz-Benjumea, F.J., and Cohen, S.M. (1998). Beadex encodes an LMO protein that regulates Apterous LIM-homeodomain activity in Drosophila wing development: a model for LMO oncogene function. Genes Dev 12, 2912-2920.
Moeller, M.E., Danielsen, E.T., Herder, R., O'Connor, M.B., and Rewitz, K.F. (2013). Dynamic feedback circuits function as a switch for shaping a maturation-inducing steroid pulse in Drosophila. Development 140, 4730-4739.
Mouillet, J.F., Henrich, V.C., Lezzi, M., and Vogtli, M. (2001). Differential control of gene activity by isoforms A, B1 and B2 of the Drosophila ecdysone receptor. Eur J Biochem 268, 1811-1819.
Mugat, B., Brodu, V., Kejzlarova-Lepesant, J., Antoniewski, C., Bayer, C.A., Fristrom, J.W., and Lepesant, J.A. (2000). Dynamic expression of broad-complex isoforms mediates temporal control of an ecdysteroid target gene at the onset of Drosophila metamorphosis. Dev Biol 227, 104-117.
Mummery-Widmer, J.L., Yamazaki, M., Stoeger, T., Novatchkova, M., Bhalerao, S., Chen, D., Dietzl, G., Dickson, B.J., and Knoblich, J.A. (2009). Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458, 987-992.
Nolo, R., Abbott, L.A., and Bellen, H.J. (2000). Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349-362.
O'Neill, E.M., Rebay, I., Tjian, R., and Rubin, G.M. (1994). The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78, 137-147.
Olma, M.H., Roy, M., Le Bihan, T., Sumara, I., Maerki, S., Larsen, B., Quadroni, M., Peter, M., Tyers, M., and Pintard, L. (2009). An interaction network of the mammalian COP9 signalosome identifies Dda1 as a core subunit of multiple Cul4-based E3 ligases. J Cell Sci 122, 1035-1044.
Oron, E., Mannervik, M., Rencus, S., Harari-Steinberg, O., Neuman-Silberberg, S., Segal, D., and Chamovitz, D.A. (2002). COP9 signalosome subunits 4 and 5 regulate multiple pleiotropic pathways in Drosophila melanogaster. Development 129, 4399-4409.
40
Oron, E., Tuller, T., Li, L., Rozovsky, N., Yekutieli, D., Rencus-Lazar, S., Segal, D., Chor, B., Edgar, B.A., and Chamovitz, D.A. (2007). Genomic analysis of COP9 signalosome function in Drosophila melanogaster reveals a role in temporal regulation of gene expression. Mol Syst Biol 3, 108.
Osterlund, M.T., Hardtke, C.S., Wei, N., and Deng, X.W. (2000). Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466.
Ou, C.Y., Lin, Y.F., Chen, Y.J., and Chien, C.T. (2002). Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev 16, 2403-2414.
Ou, C.Y., Wang, C.H., Jiang, J., and Chien, C.T. (2007). Suppression of Hedgehog signaling by Cul3 ligases in proliferation control of retinal precursors. Dev Biol 308, 106-119.
Papaioannou, M., Melle, C., and Baniahmad, A. (2007). The coregulator Alien. Nucl Recept Signal 5, e008.
Parker, D.S., Jemison, J., and Cadigan, K.M. (2002). Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 129, 2565-2576.
Pauli, T., Seimiya, M., Blanco, J., and Gehring, W.J. (2005). Identification of functional sine oculis motifs in the autoregulatory element of its own gene, in the eyeless enhancer and in the signalling gene hedgehog. Development 132, 2771-2782.
Pi, H., Wu, H.J., and Chien, C.T. (2001). A dual function of phyllopod in Drosophila external sensory organ development: cell fate specification of sensory organ precursor and its progeny. Development 128, 2699-2710.
Pick, E., Hofmann, K., and Glickman, M.H. (2009). PCI complexes: Beyond the proteasome, CSN, and eIF3 Troika. Mol Cell 35, 260-264.
Pickup, A.T., Lamka, M.L., Sun, Q., Yip, M.L., and Lipshitz, H.D. (2002). Control of photoreceptor cell morphology, planar polarity and epithelial integrity during Drosophila eye development. Development 129, 2247-2258.
Pintard, L., Kurz, T., Glaser, S., Willis, J.H., Peter, M., and Bowerman, B. (2003). Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr Biol 13, 911-921.
41
Polly, P., Herdick, M., Moehren, U., Baniahmad, A., Heinzel, T., and Carlberg, C. (2000). VDR-Alien: a novel, DNA-selective vitamin D(3) receptor-corepressor partnership. FASEB J 14, 1455-1463.
Read, M.A., Brownell, J.E., Gladysheva, T.B., Hottelet, M., Parent, L.A., Coggins, M.B., Pierce, J.W., Podust, V.N., Luo, R.S., Chau, V., et al. (2000). Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol Cell Biol 20, 2326-2333.
Rewitz, K.F., Yamanaka, N., Gilbert, L.I., and O'Connor, M.B. (2009). The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis. Science 326, 1403-1405.
Rewitz, K.F., Yamanaka, N., and O'Connor, M.B. (2010). Steroid hormone inactivation is required during the juvenile-adult transition in Drosophila. Dev Cell 19, 895-902.
Rhyu, M.S., Jan, L.Y., and Jan, Y.N. (1994). Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477-491.
Riddiford, L.M. (1993). Hormone receptors and the regulation of insect metamorphosis. Receptor 3, 203-209.
Robinow, S., and White, K. (1988). The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. Dev Biol 126, 294-303.
Roegiers, F., Younger-Shepherd, S., Jan, L.Y., and Jan, Y.N. (2001). Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage. Nat Cell Biol 3, 58-67.
Romani, S., Campuzano, S., Macagno, E.R., and Modolell, J. (1989). Expression of achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev 3, 997-1007.
Rovani, M.K., Brachmann, C.B., Ramsay, G., and Katzen, A.L. (2012). The dREAM/Myb-MuvB complex and Grim are key regulators of the programmed death of neural precursor cells at the Drosophila posterior wing margin. Dev Biol 372, 88-102.
Sawatsubashi, S., Murata, T., Lim, J., Fujiki, R., Ito, S., Suzuki, E., Tanabe, M., Zhao, Y., Kimura, S., Fujiyama, S., et al. (2010). A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev 24, 159-170.
42
Schubiger, M., Carre, C., Antoniewski, C., and Truman, J.W. (2005). Ligand-dependent de-repression via EcR/USP acts as a gate to coordinate the differentiation of sensory neurons in the Drosophila wing. Development 132, 5239-5248.
Schubiger, M., and Truman, J.W. (2000). The RXR ortholog USP suppresses early metamorphic processes in Drosophila in the absence of ecdysteroids. Development 127, 1151-1159.
Schwedes, C., Tulsiani, S., and Carney, G.E. (2011). Ecdysone receptor expression and activity in adult Drosophila melanogaster. J Insect Physiol 57, 899-907.
Sedkov, Y., Cho, E., Petruk, S., Cherbas, L., Smith, S.T., Jones, R.S., Cherbas, P., Canaani, E., Jaynes, J.B., and Mazo, A. (2003). Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. Nature 426, 78-83.
Skeath, J.B., Panganiban, G., Selegue, J., and Carroll, S.B. (1992). Gene regulation in two dimensions: the proneural achaete and scute genes are controlled by combinations of axis-patterning genes through a common intergenic control region. Genes Dev 6, 2606-2619.
Spana, E.P., and Doe, C.Q. (1995). The prospero transcription factor is asymmetrically localized to the cell cortex during neuroblast mitosis in Drosophila. Development 121, 3187-3195.
Stewart, M., Murphy, C., and Fristrom, J.W. (1972). The recovery and preliminary characterization of X chromosome mutants affecting imaginal discs of Drosophila melanogaster. Dev Biol 27, 71-83.
Suh, G.S., Poeck, B., Chouard, T., Oron, E., Segal, D., Chamovitz, D.A., and Zipursky, S.L. (2002). Drosophila JAB1/CSN5 acts in photoreceptor cells to induce glial cells. Neuron 33, 35-46.
Tabata, T., Schwartz, C., Gustavson, E., Ali, Z., and Kornberg, T.B. (1995). Creating a Drosophila wing de novo, the role of engrailed, and the compartment border hypothesis. Development 121, 3359-3369.
Talbot, W.S., Swyryd, E.A., and Hogness, D.S. (1993). Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 73, 1323-1337.
Thummel, C.S. (1995). From embryogenesis to metamorphosis: the regulation and function of Drosophila nuclear receptor superfamily members. Cell 83, 871-877.
43
Thummel, C.S. (1996). Flies on steroids--Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet 12, 306-310.
Thummel, C.S. (2001). Molecular mechanisms of developmental timing in C. elegans and Drosophila. Dev Cell 1, 453-465.
Tsai, C.C., Kao, H.Y., Yao, T.P., McKeown, M., and Evans, R.M. (1999). SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development. Mol Cell 4, 175-186.
Uhle, S., Medalia, O., Waldron, R., Dumdey, R., Henklein, P., Bech-Otschir, D., Huang, X., Berse, M., Sperling, J., Schade, R., et al. (2003). Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J 22, 1302-1312.
Wee, S., Geyer, R.K., Toda, T., and Wolf, D.A. (2005). CSN facilitates Cullin-RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nat Cell Biol 7, 387-391.
Wei, N., Chamovitz, D.A., and Deng, X.W. (1994). Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78, 117-124.
Wei, N., and Deng, X.W. (1992). COP9: a new genetic locus involved in light-regulated development and gene expression in arabidopsis. Plant Cell 4, 1507-1518.
Wei, N., and Deng, X.W. (2003). The COP9 signalosome. Annu Rev Cell Dev Biol 19, 261-286.
Wei, N., Serino, G., and Deng, X.W. (2008). The COP9 signalosome: more than a protease. Trends Biochem Sci 33, 592-600.
Winbush, A., and Weeks, J.C. (2011). Steroid-triggered, cell-autonomous death of a Drosophila motoneuron during metamorphosis. Neural Dev 6, 15.
Wu, J.T., Chan, Y.R., and Chien, C.T. (2006). Protection of cullin-RING E3 ligases by CSN-UBP12. Trends Cell Biol 16, 362-369.
Wu, J.T., Lin, H.C., Hu, Y.C., and Chien, C.T. (2005). Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation. Nat Cell Biol 7, 1014-1020.
Wu, J.T., Lin, W.H., Chen, W.Y., Huang, Y.C., Tang, C.Y., Ho, M.S., Pi, H., and Chien, C.T. (2011). CSN-mediated deneddylation differentially modulates Ci(155) proteolysis to promote Hedgehog signalling responses. Nat Commun 2, 182.
44
Wu, K., Chen, A., and Pan, Z.Q. (2000). Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J Biol Chem 275, 32317-32324.
Xu, T., and Rubin, G.M. (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223-1237.
Yao, T.P., Forman, B.M., Jiang, Z., Cherbas, L., Chen, J.D., McKeown, M., Cherbas, P., and Evans, R.M. (1993). Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366, 476-479.
Yip, M.L., Lamka, M.L., and Lipshitz, H.D. (1997). Control of germ-band retraction in Drosophila by the zinc-finger protein HINDSIGHT. Development 124, 2129-2141.
Zeng, X., and Hou, S.X. (2012). Broad relays hormone signals to regulate stem cell differentiation in Drosophila midgut during metamorphosis. Development 139, 3917-3925.
Zhou, L., Schnitzler, A., Agapite, J., Schwartz, L.M., Steller, H., and Nambu, J.R. (1997). Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc Natl Acad Sci U S A 94, 5131-5136.
Zhou, X., and Riddiford, L.M. (2002). Broad specifies pupal development and mediates the 'status quo' action of juvenile hormone on the pupal-adult transformation in Drosophila and Manduca. Development 129, 2259-2269.
Zhou, X., Zhou, B., Truman, J.W., and Riddiford, L.M. (2004). Overexpression of broad: a new insight into its role in the Drosophila prothoracic gland cells. J Exp Biol 207, 1151-1161.
Zipursky, S.L., Venkatesh, T.R., Teplow, D.B., and Benzer, S. (1984). Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes. Cell 36, 15-26.
Zwart, M.F., Randlett, O., Evers, J.F., and Landgraf, M. (2013). Dendritic growth gated by a steroid hormone receptor underlies increases in activity in the developing Drosophila locomotor system. Proc Natl Acad Sci U S A 110, E3878-3887.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 研究XIAP於BCL10媒介Dectin-1訊號傳遞中所扮演的角色
2. 生活型態改變合併身體活動諮詢方案對降低代謝症候群中老年婦女的代謝危險因子之成效:臨床隨機試驗
3. 去泛素酶Leon/USP5控制泛素鍊動態平衡於果蠅神經肌肉交結後突觸分化
4. 老虎黴素抗性之鮑氏不動桿菌的幫浦機制探討
5. 以腦部神經影像學與基因變異為基礎探討重鬱症病人自殺行為與使用抗鬱藥治療反應的生物標記
6. 居家彈力帶運動介入對改善髖關節置換術病人的下肢肌力、動態平衡、有氧耐力、髖關節功能、髖關節活動範圍與生活品質的成效
7. 尿壓素對阿霉素所誘發的細胞凋亡之影響及相關機制在 心肌細胞和人類臍靜脈內皮細胞之探討
8. 介白素15系統與CD4+ T細胞耐受性
9. TORC1藉由Myc來改變染色質結構進而調控JAK/STAT訊息路徑的活化與功能
10. 論探詢果蠅卵中Dmoesin上游磷酸化調控因子以及果蠅去頭蓋蛋白質2和Cappuccino蛋白的關係
11. 高雄市國中校長教育資源運用、經營策略與學校效能關係之研究
12. 探討STAT3/Snail在對順鉑產生抗藥性之非典型畸胎/類橫紋肌細胞瘤中扮演調控細胞的侵襲能力與癌幹細胞特性之角色
13. DNA 甲基化作為肝癌生物指標之相關研究
14. 肺癌病人行肺葉切除術後之生活品質
15. 藉由頻譜分析探討冷刺激清醒大鼠所引起之血流動力學振盪變化的機制