跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 13:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉于菁
研究生(外文):Yu-Chin Liu
論文名稱:由火焰百合分離之potyvirus與cucumovirus病毒分子及生物特性分析
論文名稱(外文):Molecular and biological characterization of potyvirus and cucumovirus isolated from Gloriosa superba
指導教授:王惠亮
指導教授(外文):Hui-Liang Wang
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:生物科技系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:88
中文關鍵詞:火焰百合胡瓜嵌紋病毒鞘蛋白百合斑紋病毒馬鈴薯Y屬病毒
外文關鍵詞:Gloriosa spp.Cucumber mosaic viruscoat proteinLily mottle viruspotyvirus
相關次數:
  • 被引用被引用:3
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
由台中及屏東之火焰百合植株上發現葉片有黃化嵌纹型的病徵,經由非直接酵素結合抗體反應測試,台中與屏東火焰百合均對LMoV免疫球蛋白有反應;但屏東火焰百合卻對CMV免疫球蛋白亦有反應,顯示有複合感染之情形。透過電子顯微鏡,以陰染法觀察台中火焰百合病毒液,得到病毒顆粒長度約在760-860 nm之間,寬度約在10-15 nm之間。而屏東火焰百合經由三次單斑接種奎藜純化所得之病毒液,透過電子顯微鏡觀察到直徑約為29-31 nm大小之球形顆粒,而此純化後的病毒液在光度吸收曲線圖方面,最高在 258 nm,最低在 221 nm,Amax/Amin之比值為 4.71,A280/A260比值為 0.591。以病毒RNA電泳分析,發現三條明帶大小約在4、3.8、2.5 kb。以SDS-PAGE凝膠電泳分析,分子量約為27.5 kDa。將鞘蛋白基因定序,共有657個核苷酸。其所對應轉譯蛋白質可產生218個胺基酸,分子量經DNASIS軟體分析約為24.1 kDa。與許多不同品系的胡瓜嵌紋病毒之鞘蛋白基因經核苷酸與胺基酸序列比對,發現核苷酸相同度可高達92~97%,胺基酸最高可達97~100%。本研究顯示該病毒為胡瓜嵌紋病毒的火焰百合分離株,且本論文是國內首次從火焰百合分離出胡瓜嵌紋病毒的報告。此外,將病毒感染之台中火焰百合病葉以potyvirus純化方法純化,在離心管中僅見一乳白色帶。純化病毒之紫外光吸光值最高在 260 nm,最低在 245 nm, Amax/Amin 之比值為 1.1,A280/A260之比值為 0.83。病毒RNA經膠體電泳顯示其分子大小約為10 kb。以SDS-PAGE凝膠電泳分析,鞘蛋白次單位分子量約為28.3 kDa。將鞘蛋白基因定序,共有798個核苷酸。其所對應轉譯蛋白質可產生266個胺基酸,分子量經DNASIS軟體分析約為29.8 kDa。進行間接型酵素連結免疫分析法時,發現病葉會與Lily mottle vius(LMoV)之免疫球蛋白產生反應。但經核苷酸序列比對,卻發現與NCBI上所發表之LMoV鞘蛋白基因序列相同度並不高,於核苷酸卻僅有61%,胺基酸58% 之相同度,故推斷台中火焰百合上之病毒與LMoV並不同一種病毒;進一步以台中火焰百合病葉及LMoV感染病葉透過針對於火焰百合上之病毒與LMoV其CP片段所設計之引子對進行RT-PCR,結果亦顯示此病毒與LMoV為不同種病毒,故推測與LMoV可能僅有血清學上之親緣關係。以上結果認定本病毒為一新病毒,將其命名為火焰百合嵌紋病毒(Glory lily mosaic virus, GLMV)。
Plants of Gloriosa superba L. with yellow mosaic symptom which collected from Taichung and Pingtung showed positive reaction in indirect ELISA test with Lily mottle virus antibody. However, the diseased G. superba collected in Pingtung also reacted with Cucumber mosaic virus antibody in indirect ELISA indicatory the plants collected in Pingtung were mix infected with viruses. Under electron microscope in negatively stained of the virus of glory lily in Taichung, and the particles that were 760-860 nm in length and 10-15 nm in width. Under electron microscope purified virus with the single lesion of Chenopodium quinoa L. were infected by glory lily in Pingtung were only observed icosaheral particles with 29-31 nm diameter and the virus purification inoculated C. quinoa had a maximum and minimum absorption at 258 nm and 221 nm, respectively. Amax/Amin and A280/A260 ratios were 4.71 and 0.591, respectively. There were three bands, 4.0, 3.8 and 2.5 kb observed in the electrophoresis of double strand RNA of virus. The molecular weight of coat protein of the virus was estimated 27.5 kDa in the SDS-PAGE. Besides, with cDNA synthesis and PCR amplification, the gene of coat protein was cloned and sequenced. 657 nucleotides encoded a 24.1 kDa protein of 218 amino acid. When inquired the nucleotide and amino acid sequences of CP gene with NCBI database, it showed a high identity of 92~97% and 97~100% , respectively with other strains of Cucumber mosaic virus. Cucumber mosaic virus isolated from Gloriosa superba was first report in Taiwan. Furthermore, the virus purified from diseased leaves of G. superba in Taichung with a white opaque circular band in the centrifuge tube. The purified virus had a maximum and minimum absorption at 260 nm and 245 nm, respectively. Amax/Amin and A280/A260 ratios were 1.1 and 0.83, respectively. Electrophoretic analysis revealed that a 10 kb size of viral RNA of virus purified from G. superba. The molecular weight of coat protein of the virus was estimated 28.3 kDa in the SDS-PAGE. Besides, with cDNA synthesis and PCR amplification, the gene of coat protein was cloned and sequenced, which was found to contain 798 nucleotides encoded a 29.8 kDa protein of 266 amino acid residues. In indirect ELISA test, the LMoV antiserum reacted with the leaves of virus-infected G. superba. When inquired the nucleotide and amino acid sequences of CP gene with NCBI database, it showed the nucleotide and amino acid identities of 61% and 58% with LMoV (NC_005288), respectively. The result indicated that the virus of G. superba in Taichung and LMoV were different viruses; and throught RT-PCR which were amplified from total RNA of diseased leaves with primers which designed by CP sequences of the virus and LMoV, respectively. The result also indicated this virus and LMoV were different viruses,and the virus may only have serological relationship with the LMoV. Since the evidence showed that this virus was a new virus on glory lily named as Glory lily mosaic virus(GLMV)temporaily.
中文摘要……………………………………………………………………… I
英文摘要……………………………………………………………………… III
壹、前言……………………………………………………………………… 1
一、火焰百合簡介…………………………………………………………… 1
二、可感染火焰百合的病毒種類…………………………………………… 3
三、病毒簡介………………………………………………………………… 4
(一)Potyvirus屬病毒特性………………………………………………… 4
(二)胡瓜嵌紋病毒簡介……………………………………………………… 6
四、鞘蛋白基因在分類上之應用………………………………………… 8
五、植物病毒鑑定與病害防治之發展現況………………………………… 9
六、研究目的………………………………………………………………… 11
貳、材料與方法……………………………………………………………… 12
一、病毒之來源與接種試驗………………………………………………… 12
二、病毒以間接酵素結合抗體檢定法初步鑑定…. ……………………… 12
三、寄主範圍之測定………………………………………………………… 13
四、病毒之分離與純化……………………………………………………… 13
(一)台中火焰百合及屏東火焰百合之長絲狀病毒……………………… 13
(二)屏東火焰百合球狀病毒……………………………………………… 14
五、電子顯微鏡觀察……………………………………………………… 16
六、火焰百合病毒之SDS-PAGE膠體電泳分析…………………………… 16
七、火焰百合病毒鞘蛋白之西方墨點分析……………………………… 17
八、病毒ssRNA與dsRNA之萃取與分子大小測定………………………… 18
(一)萃取病毒RNA………………………………………………………… 18
(二)病毒RNA分子大小測定……………………………………………… 19
(三)萃取病毒double strand RNA…………………………………… 19
(四)病毒double strand RNA分子大小測定………………………… 20
(五)萃取植物組織total RNA………………………………………… 20
九、病毒基因之定序……………………………………………………… 21
(一)SuperScript RNase H- Reverse Transcription技術 … 22
1.第一股cDNA的合成………………………………………………… 22
2.聚合酶連鎖反應(PCR)………………………………………… 22
3. PCR產物之電泳膠體分析………………………………………… 25
(二)回收PCR產物………………………………………………………… 25
(三)連結(ligation)…………………………………………………… 25
(四)E. coli DH5α勝任細胞(competent cells)的配置………… 26
(五)轉形作用(transformation)…………………………………… 26
(六)質體(plasmid) DNA的萃取……………………………………… 27
(七)挑選正確的質體DNA………………………………………………… 27
1.質體DNA之電泳膠體分析…………………………………………… 27
2.聚合酶連鎖反應(PCR)……………………………………………… 28
(八)基因核酸序列之譯讀……………………………………………… 28
(九)基因序列之比對…………………………………………………… 28
參、結果……………………………………………………………………… 32
一、病毒之來源與初步鑑定………………………………………………… 32
(一)病毒感染植物之病徵………………………………………………… 32
(二)間接ELISA檢定……………………………………………………… 32
二、寄主範圍……………………………………………………………… 32
三、病毒純化與分析……………………………………………………… 39
(一)病毒純化……………………………………………………………… 39
(二)吸光度曲線及吸光值………………………………………………… 39
四、病毒型態之電子顯微鏡……………………………………………… 40
五、病毒進行indirect ELISA測試…………………………………… 40
六、火焰百合之SDS-PAGE膠體電泳與西方墨點分析…………………… 45
七、病毒核酸之萃取與分子大小測定…………………………………… 51
八、GL–poty與GL–CMV病毒鞘蛋白核酸與胺基酸序列分析…………… 51
(一)反轉錄聚合酶連鎖反應產物之電泳膠體分析……………………… 51
(二)利用PCR篩選出正確的質體DNA之電泳膠體分析………………… 51
(三) GL–poty病毒CP基因核酸序列之譯讀分析…………………… 51
(四) GL–CMV病毒CP基因核酸序列之譯讀分析……………………… 56
(五)以RT-PCR確認台中火焰百合之病毒感染………………………… 56
九、GL–poty病毒基因序列與不同potyviruses之比較……………… 61
十、GL–CMV與不同品系CMV CP基因核酸與胺基酸序列比對………… 67
肆、討論……………………………………………………………………… 72
伍、參考文獻………………………………………………………………… 80
1. 方鄒誠。2002。黑眼豇豆嵌紋病毒台灣系統基因序列之定序與分析。國立高雄師範大學生物科學研究所碩士論文。高雄。119 pp。
2. 王志農。2003。齒舌蘭輪斑病毒台灣系統基因序列譯讀與分析。國立高雄師範大學生物科學研究所碩士論文。103 pp。
3. 王惠亮、方鄒誠。2004。黑眼豇豆嵌紋病毒台灣系統因因序列之定序與分析。植物病理學會刊13:117-126。
4. 王惠亮、王志農、張清安。2004。齒舌蘭輪斑病毒台灣系統基因序列譯讀與分析。植物病理學會刊13:97-106。
5. 王惠亮、林偉志。2004。喜姆比蘭嵌紋病毒台灣系統基因序列譯讀與分析。植物病理學會刊13:61-68。
6. 包慧俊。1999。木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究。國立中興大學植物病理學研究所博士論文。
7. 江主惠。1995。木瓜輪點病生體外及生體內具感染力轉錄體之構築及重組病毒體致病力之分析。國立中興大學植物病理學研究所博士論文。
8. 西良祐。1997。366日花事典。躍昇文化事業有限公司。
9. 吳淑芬。1995。花的奇妙世界:四季花語錄。綠生活國際股份有限公司。
10.胡仲祺、張世忠。2005。RNA干擾技術在動植物病毒病害防治之應用。農政與農情 158。
11.許圳塗。1978。臺灣原生百合生長習性及栽培利用之研究。國立臺灣大學園藝系編印。台北。
12.張清安、陳金枝。1996。球根花卉病毒及預防。球根花卉產業研討會專刊。農林廳種苗改良繁殖場編印。160-173頁。
13.張清安、陳金枝、鄧汀欽。1998。本省百合病毒研究及檢定技術發展現況。唐菖蒲及百合及菊花研究現況產業發展研討會專刊。151-158頁。
14.張清安。2001。病毒病害-植物保護圖鑑系列5-百合保護。行政院農業委員會動植物防疫檢疫局出版。57-72頁。
15.張怡莉。2003。胡瓜嵌紋病毒衛星核酸複製訊號之探討。國立中興大學生物科技學研究所碩士論文。
16.陳慶忠、柯文華、陳煜焜。1998。洋桔梗上胡瓜嵌紋病毒之鑑定及傳播試驗。台中區農業改良場研究彙報 60:1-18。
17.陳煜焜、詹富智、陳慶忠、林靜宜、鄭尤琇。2003。胡瓜嵌紋病毒感染花卉種子及蔬菜種子之檢測調查與病毒分類鑑定。行政院農委會動植物防疫檢疫局92年度科技研究計畫研究報告。
18.游邦照。2005。木瓜輪點病毒及木瓜畸葉病毒交互保護及轉基因抗性之研究。國立中興大學植物病理研究所博士論文。142頁。
19.董立。1980。球根花卉。自然科學文化事業公司出版部。
20.園藝編輯組。2005。球根花卉栽培指南。文國書局發行。
21.盧幽枝。2005。由矮牽牛分離之胡瓜嵌紋病毒特性之研究。國立高雄師範大學生物科學研究所碩士論文。69 pp。
22.戴君明。2005。孤挺花潛隱病毒序列之譯讀與分析。國立高雄師範大學生物科學研究所碩士論文。148 pp。
23.薛聰賢。1998。台灣花卉實用圖鑑(第三輯)球根花卉。台灣普綠出版部。
24.蕭伯仁。2003。矮南瓜黃化嵌紋與木瓜輪點病毒西瓜系統鞘蛋白表現載體之構築。國立高雄師範大學生物科學研究所碩士論文。82 pp。
25.蘇雅林。1999。台灣孤挺花病毒之研究。國立高雄師範大學生物科學研究所碩士論文。82 pp。
26.龔抒。1996。最新世界各國國旗、國徽、國歌(附:國花、國鳥)。世界知識出版社。
27.Aleman-Verdaguer, M. E., Goudou-Urbino, C., Dubern, J. Beachy, R. N., and Fauquet, C. 1997. Analysis of the sequence diversity of the P1, HC, P3, NIb and CP genomic regions of several Yam mosaic potyvirus isolates: implications for the intraspecies molecular diversity of potyviruses. J. Gen. Virol. 78: 1253-1264.
28.Benetti, M. P., and Tomassoli, L. 1988. Cucumber mosaic virus in lilies in Italy. Acta Hortic. 234: 465-468.
29.Blanc, S., Lopez-Moya, J. J., Wang, R., Garcia-Lampasona, S., Thornbury, D.W., and Pirone, T. P. 1997. A specific interaction between coat protein and helper component correlates with aphid trandmission of a potyvirus. Virology 231: 141-147.
30.Brigneti, G., Voinnet, O., Li, W. X., Ji, L. H., Ding, S. W., and Baulcombe, D. C. 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17: 6739–6746.
31.Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L., and Zurcher, E. J. 1996. Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 16th January 1997. URL http://biology.anu.edu.au/Groups/MES/vide/
32.Chen, Y. K., Derks, A. F. L. M., Langeveld, S. A., Goldbach, R., and Prins, M. 2001. High sequence conservation among Cucumber mosaic virus isolates from Lily. Arch. Virol. 146: 1631-1636.
33.Clark, M. F., and Adams, A. N. 1977. Characteristic of the microplates method of enzyme-linked immunosorbent assay for the detection of plant virus. J. Gen. Virol. 34: 475-483.
34.Desbiez, C., Wipf-Scheibel, C., and Lecoq, H. 1999. Reciprocal assistance for aphid transmission between non-transmissible strains of Zucchini yellow mosaic potyvirus in mixed infections. Arch. Virol. 144: 2213-2218.
35.Dallwitz, M. J. 1980. A general system for coding taxonomic descriptions. Taxon 29: 41-46.
36.Dallwitz, M. J., Paine, T. A., and Zurcher, E. J. 1993. User's Guide to the DELTA System: a general system for processing taxonomic descriptions. 4th edition. 136 pp.
37.Ding, S. W., Li, W. X., and Symons, R. H. 1995. A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitate long distance virus movement. EMBO J. 14: 5762–5772.
38.Ding, S.W., Shi, B. J., Li, W. X., and Symons, R. H. 1996. An interspecies hybrid RNA virus is significantly more virulent than either parental virus. Proc. Natl. Acad. Sci. U.S.A. 93: 7470–7474.
39.Duke, J. A. 1985. Handbook of medicinal herbs. CRC Press, USA.
40.Flasinski, S. and Cassidy, B. G. 1998. Potyvirus aphid transmission requires helper component and homologous coat protein for maximal efficiency. Arch. Virol. 143: 2159−2172.
41.Fraile, A., Alonso-Prados, J. L., Aranda, M. A., Bernal, J. J., Malpica, J., and Garcı´a-Arenal, F. 1997. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J. Virol. 71: 934–940.
42.Francki, R. I. B., Randles, J. W., Chambers, T. C., Wilson S. B. 1966. Some properties of purified Cucumber mosaic virus (Q strain). Virology 28: 729-741.
43.Gal-On, A., Antigus Y., Rosner, A., and Raccah, B. 1991. Infectious in vitro RNA transcripts derived from cloned cDNA of the cucurbit potyvirus, Zucchini yellow mosaic virus. J. Gen. Virol. 72: 2639-2642.
44.Gal-On, A., Antignus, Y., Rosner, A., and Raccah, B. 1992. A Zucchini yellow mosaic virus coat protein gene mutation restores aphid transmissibility but has no effect on multiplication. J. Gen. Virol. 73: 2183-2187.
45.Goldbach, R., Bucher, E., and Prins, M. 2003. Resistance mechanisms to plant viruses: an overview. Virus Res. 92: 207-212.
46.Haase, A., Richter, J., and Rabenstein, F. 1989. Monoclonal antibodies for detection and serotyping of Cucumber mosaic virus. J. Phytopathol. 127: 129–136.
47.Hassan, A. S., and Shyamal K. R. 2005. Micropropagation of Gloriosa superba L. Through High Frequency Shoot Proliferation. Plant Tissue Cult. 15(1): 67-74.
48.Hsu, Y. H., Lin, F. Z., Hu, C. C., and Yin, S. C. 1989. Host reaction, serology and RNA pattern of Cucumber mosaic virus isolates. Plant Prot. Bull. 31: 51-59.
49.Hsu, Y. H., Wu, C. W., Lin, B. Y., Chen, H. Y., Lee, M. F., and Tsai, C. H. 1995. Complete genomic RNA sequences of Cucumber mosaic virus strain NT9 from Taiwan. Arch. Virol. 140: 1841-1847.
50.Hong, Y., and Hunt, A. G. 1996. RNA polymerase activity catalyzed by a potyvirus-encode RNA-dependent RNA polymerase. Virology 226: 146-151.
51.Hung, T. H., Wu, M. L., and Su, H. J. 2000. A rapid method based on the one step reverse transcription-polymerase chain reaction(RT-PCR)technique for detection of different strains of Citrus tristeza virus. J. Phytopathol. 148: 469-475.
52.ICTVdB. http://www.ncbi.nlm.nih.gov/ICTVdb/
53.Jacobi, V., Bachand, G. D., Hamelin, R. C., and Castello, J. D. 1998. Development of a multiplex immunocapture RT-PCR assay for detection and differentiation of tomato and Tobacco mosaic tobamoviruses. J. Virol. Methods 74: 167–178.
54.Kaniewski, W., Ilardi, V., Tomassoli, L., Mitsky, T., Layton, J., and Barba, M. 1999. Extreme resistance to Cucumber mosaic virus(CMV)in transgenic tomato expressing one or two coat protein. Mol. Bread. 5: 111-119.
55.Klein, P. G., Klein, R. R., Rodriguez-Cerezo, E., Hunt, A. G., and Shaw, J. G. 1994. Mutational analysis of the Tobacco vein mottling virus genome. Virology 204: 759-769.
56.Laemmli, U. K. 1970. Cleavage of structural protein during theassembly of head of bacteriophage T4. Nature 277: 680-685.
57.Li, H. W., Lucy, A. P., Guo, H. S., Li, W. X., Ji, L. H., Wong, S. M., and Ding, S. W. 1999. Strong resistance targeted against a viral suppressor of the plant gene silencing defence mechanism. EMBO J. 18: 2683–2691.
58.Merits, A., Guo, D., and Saarma, M. 1998. VPg, coat protein and five non-structural protein A potyvirus bind RNA in a sequence-unspecific manner. J. Gen. Virol. 79: 3123-3127.
59.Minoru, T., Naofumi, S., Kenji, K., Naruto, F., and Yoichi, T. 2004. Spatial analysis for exclusive interactions between subgroups I and II of Cucumber mosaic virus in cowpea. Virology 328: 45– 51.
60.New Crop. http://www.hort.purdue.edu/newcrop/
61.Niimi, Y., Han, D. S., Mori, S., and Kobayashi, H. 2003. Detection of Cucumber mosaic virus, Lily symptomless virus and Lily mottle virus in Lilium species by RT-PCR technique. Sci. Hortic. 97: 57-63.
62.Palukaitis, P., Roossinck, M. J., Dietzgen, R. G., and Francki, R. I. B. 1992. Cucumber mosaic virus. Adv. Virus Res. 41: 281-348.
63.Peng, Y., Kadoury, D., Gal-On, A., Huet, H., and Raccah, B. 1998. Mutations in the HC-Pro gene of Zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. J. Gen. Virol. 79: 897-904.
64.Pirone, T. P., and Blanc, S. 1996. Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol 343: 227-247.
65.Powell-Abel, P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N. 1986. Delay of disease development in transgenic plant that express the Tobacco mosaic virus coat protein gene. Science 232: 738-743.
66.Rastogi, R. P., and Mehrotra, B. N. 1993. Compendium of Indian Medicinal Plants, Vol I-V. CDRI, Lucknow and Publication and Information Directorate. New Delhi. India.
67.Restrepo, M. A., Freed, D. D., and Carrington, J. C. 1990. Nuclear transport of plant potyviral proteins. Plant Cell 2: 987-998.
68.Revers, F., Gall, O. L., Candresse, T., and Maule, A. J. 1999. Newadvances in understanding the molecular biology of plant/potyvirus interactions. Mol. Plant Microbe Interact 12: 367-376.
69.Riechmann, J. L., Lain, S., and Garcia, J. A. 1992. Hightlights and prospects of potyvirus molecular biology. J. Gen. Virol. 73: 1-16.
70.Roossinck, M. J., Zhang, L., and Hellwald, K. H. 1999. Rearrangements in the 5' nontranslated region and phylogenetic analyses of Cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. J. Virol. 73: 6752-6758.
71.Roudet-Tavert, G., German-Retana, S., Delannay, T., Delacolle, B., Candress, T., and LeGall, O. 2002. Interaction between potyvirus helper component-proteinase and capsid protein in infected plants. J. Gen. Virol. 83: 1765-1770.
72.Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74: 5463-5467.
73.Shukla, D. D., and Ward, C. W. 1988. Amino acid sequence homology of coat protein as basis of coat protein sequence data and serology. Arch. Virol. 106: 171-200.
74.Shukla, D. D., and Ward, C. W. 1989. Structure of potyvirus coat proteins and its application in the tazonomy of the potyvirus group. Adv. Virus Res. 36: 273-314.
75.Shukla, D. D., Ward, C. W., and Brunt, A. A. 1994. The Potyviridae. CAB International, Wallingford, UK.
76.Suzuki, M., Kuwata, S., Kataoka, J., Masuta, C., Nitta, N., and Takanami, Y. 1991. Functional analysis of deletion mutants of Cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183: 106–113.
77.Suzuki, M., Kuwata, S., Masuta, C., and Takanami, Y. 1995. Point mutations in the coat protein of Cucumber mosaic virus affect symptoms expression and virion accumulation in tobacco. J. Gen. Virol. 76: 1791–1799.
78.Stace-Smith, R., and Tremaine, J. H. 1970. Purification and composition of potato virus Y. Phytopathology 60: 1785-1789.
79.Taliansky, M. E., and Garcı´a-Arenal, F. 1995. Role of cucumovirus capsid protein in long-distance movement within the infected plant. J. Virol. 69: 916–922.
80.Towbin, H., Staehelin, J., and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets procedure and some applications. Proc. Natl. Acad. Sci. USA. 76: 4350-4354.
81.van Regenmortel, M. H., Mayo, M. A., Fauquet, C. M., and Maniloff, J. 2000. Virus nomenclature: consensus versus chaos. Arch Virol. 145: 2227-2232.
82.Valverde, R. A., Dodds, J. A., and Heick, J. A. 1986. Double-stranded RNA from plants infected with viruses having elongated particles and undivided genomes. Phytopathology 76: 459-465.
83.Ward, C. W., and Shukla, D. D. 1991. Taxonomy of potyviruses: current problems and some solutions. Interviology 32: 269-296.
84.Yeh, S. D., Jan, F. J., Chiang, C. H., Doong, T. J., Chen, M. C., Chung, P. H., and Bau, H. J. 1992. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73: 2531-2541.
85.Yordanova, A., and Hristova, D. 1995. Serological relationship of some Cucumber mosaic virus strains. Journal of Culture Collections. 1: 42-45.
86.Yueh, C. H., Yeh, T. J., and Chang, Y. C. 2005. A new combination of RT-PCR and reverse dot blot hybridization for rapid detection and identification of potyviruses. J. Virol. Methods 128: 54–60.
87.Zheng, H. Y., Chen, J., Zhao. M. F., Lin, L., Chen, J. P., Antoniw. J. F. 2003. Occurrence and sequences of Lily mottle virus and Lily symptomless virus in plants grown from imported bulbs in Zhejiang province,China. Arch. Virol. 148: 2419-2428.
88.Zitter, T., and Gonsalves, D. 1991. Differentiation of pseudorecombinants of two Cucumber mosaic virus strains by biological properties and aphid transmission. Phytopathology 81: 139–143.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top