跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.35) 您好!臺灣時間:2025/12/17 15:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊士億
研究生(外文):Yang, Shin-Yi
論文名稱:奈米無機物包覆碳奈米管/環氧樹脂複合材料之製備及其性質之研究
論文名稱(外文):Preparation and characterization of nano-inorganic materials coated carbon nanotube /epoxy composites
指導教授:馬振基馬振基引用關係
指導教授(外文):Ma, Chen-Chi M.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:236
中文關鍵詞:奈米碳管環氧樹脂奈米複合材料熱介面材料
外文關鍵詞:carbon nanotubeepoxynanocompositesthermal interficial material
相關次數:
  • 被引用被引用:3
  • 點閱點閱:961
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分成三部分,第一部分為探討介面絕緣之多壁碳奈米管(MWCNTs)包覆技術,首先藉由Friedel-Crafts Acylation對多壁碳奈米管進行表面改質,分別接枝上Benzenetricarboxylic acid (BTC)與gallic acid (GA),並藉由拉曼光譜 (Raman Spectrum)、高解析電子能譜儀 (XPS)、紅外線光譜儀(FT-IR) 進行定性分析,以TGA作定量分析,接者藉由醯胺化反應使BTC-MWCNT與GA-MWCNT接枝上(3-Isocyanatopropyl) triethoxysilane (ICPES),進一步以3-Aminopropyl trimethoxysilane (APTES) 與Aluminium isopropoxide(ALIP)來進行不同無機氧化物之溶膠凝膠法包覆碳奈米管以達到絕緣性之目的, 在此部分探討(1)Friedel-Crafts Acylation 對碳奈米管的結構影響,(2)接枝上不同單體對後續無機物包覆型態之影響,(3)包覆奈米無機物之碳奈米管對其電性與分散性質之影響。
  由Raman光譜的分析可知未改質的碳奈米管有最低的D band/G band積分面積相對比值(1.08),因其結構性最為完整,而經過酸氧化改質碳奈米管其由於酸洗改質碳奈米管表面時,穩定六員環會被硝酸氧化破壞造成環型開環,使得D band/G band積分面積相對比值大幅上升(1.29)。而Friedel-Crafts acylation改質之碳奈米管的D band/G band積分面積與未改質碳奈米管之相對比值上並沒有明顯的變化(1.12與1.09),表示其除了可以有效改質碳奈米管,更可以保持碳奈米管之結構完整性 。
  由TEM觀察可知,經由接枝ICPES的碳奈米管可以有效提升碳奈米管與無機前驅物水解後之膠體粒子的化學親合性,使得改質之碳奈米管導入膠體溶液後可以形成奈米級無機物包覆之碳奈米管,而深入比較兩系統之不同的官能基對ICPES的反應性差異,進而之對後續無機前驅物膠體粒子之親合性不同,使得在無機物包覆型態上的完整性出現差異,二氧化矽與三氧化二鋁包覆ICPES-BTC-MWCNT 的厚度約為7~20nm,並呈現部分連續性的包覆,而二氧化矽與三氧化二鋁包覆ICPES-BTC-MWCNT 的厚度約為5~15nm,並呈現部分均勻且連續性的包覆型態。
由溶劑分散性測試可知,無機物包覆之碳奈米管可以在THF溶劑中保持良好之懸浮分散性,本研究之介面包覆技術除了可以包覆奈米級無機氧化物於碳奈米管表面亦可以同時官能基化碳奈米管。
  由導電性量測分析可知,無機物包覆在碳奈米管表面可以有效抑制粉末之導電性,在二氧化矽與三氧化二鋁包覆ICPES-BTC-MWCNT粉末電阻上升約106Ω*cm,而二氧化矽與三氧化二鋁包覆ICPES-BTC-MWCNT粉末電阻上升約108Ω*cm。


  第二部分主要在導入一系列改質之碳奈米管於環氧樹脂之中,製備碳奈米管/環氧樹脂複合材料,並比較不同種類之碳奈米管在不同添加量下(0、1、3、5phr)對於複合材料之熱傳導性質、電性質與熱膨脹性質之影響。
本研究使用三氧化二鋁包覆之碳奈米管導入環氧樹脂形成複合材料後,在導電度測量方面,環氧樹脂在導入5phr三氧化二鋁包覆之碳奈米管其體積電阻可維持在1.29*1014~5.78*1015Ω*cm ;加入5phr包覆之碳奈米管其介電常數可以維持在3.72~4.56;玻璃態熱膨脹係數由66.44 ppm/oC下降到52.5~45.1ppm/oC (下降21~32%),橡膠態熱膨脹係數由253.1 ppm/oC下降到215~201.1ppm/oC (下降15%~20.5%);在熱傳導測量方面,其導熱度由0.13 W/mK上升到1.01~1.1W/mK(上升677~746%)。

  第三部分的研究旨在將三氧化二鋁包覆之碳奈米管添加在三氧化二鋁/環氧樹脂形成三成分複合材料,以製備絕緣導熱之熱介面材料,並在此部分與商業化配方之無機粉添加量去做比較,探討包覆碳奈米管導入三氧化二鋁/環氧樹脂複合材料對其三元摻混複合材料之熱傳導性質、電性質與熱膨脹性質之影響。
The objectives of this research are the preparation and characterization of poymer composite for the use in thermal interfacial materials (TIM). There are three parts in this study.
The first part of this research is to develope the surface coating technologies for using these MWCNTs to template the assembly of silica and alumina nanoparticle. At first, the functionalized multi-walled carbon nanotubes (MWCNTs) were prepared via Friedle-Crafts acylation with Benzenetricarboxylic acid and Gallic acid. Raman spectra and X-ray photoelectron spectroscope (XPS) were utilized to characterize the functionalization of MWCNT.Thermogravimetric analysis (TGA) was used to calculate the organic contents of Benzenetricarboxylic acid and Gallic acid grafted MWCNT (BTC-MWNT and GA-MWCNT), which were 20.1wt% and 7.03wt%, respectively. Second, silane functionalized BTC-MWCNT and GA-MWCNT were prepared via amidation with (3-isocyanatopropyl) triethoxysilane. Raman spectra and X-ray photoelectron spectroscope (XPS) were utilized to characterize the functionalization of MWCNT. The ICPES-BTC-MWCNT and ICPES-GA-MWCNT were utilized as the nano-catchers for inorganic nanoparticles by the covalent incorporation between the silane functionalized MWCNTs and inorganic nanoparticles. The nano silica layer and nano alumina layer coated on the surface of MWCNTs can prohibit the conductive path of electrons. This part intends to investigate (1)the effect of functionalization on the structure of the MWCNTs by Friedel-Crafts modification;(2)the difference in the reactivity of functional groups on the surfaces of MWCNTs affect the morphology of inorganic nanoparticles coated on the MWCNTs;(3)the electrical properties and dispersion of inorganic nanolayer coated the MWCNTs.
The ID/IG area ratio of prinstine-MWCNTs, acid treated MWCNTs, BTC-MWCNTs and GA-MWCNTs are 1.08, 1.29, 1.12 and 1.09, respectively. The ID/IG values of BTC-MWCNTs and GA-MWCNTs indicate this modification will functionalize the MWCNTs with slightly or no damage on the structure of MWCNTs.
The morphology of inorganic nonoparticles coated on the surface of MWCNTs can be observed by TEM. The coating thickness of SiO2@BTC-MWCNT and Al2O3@BTC-MWCNT are about 7~20nm. The morphology exhibits partially continuous coating, and the silica layer is more smooth than alumina layer. The coating thickness of SiO2@GA-MWCNT and Al2O3@GA-MWCNT are about 5~15nm and the morphology exhibits more continuous coating than those of BTC-MWCNT series.
The volume resistivities of SiO2@BTC-MWCNT and Al2O3@BTC-MWCNT increased 106Ω*cm comparising with prinstine-MWCNT (4.71Ω*cm). The volume resistivities of SiO2@GA-MWCNT and Al2O3@GA-MWCNT increased 108Ω*cm comparising with prinstine-MWCNT. Results confirm that the nano silica layer and nano alumina layer coated on the surface of MWCNTs can prohibit the electrical conductive path effectively.

The second part of this research discusses the preparation and characteration of functionalized MWCNTs/epoxy composites. This study investigates the electrical property, dielectrical property, thermal property and thermal conductivity of nanocomposites with various contents of MWCNTs in epoxy matrix.
The nanocomposite was prepared with 5phr Al2O3@MWCNTs. The volume resistivity and dielectrical constant of the Al2O3@MWCNTs/epoxy composite were 1.29*1014~5.78*1015Ω*cm and 3.72~4.56, respectively. The glass state CTE α1(coefficient of thermal expansion) and rubber state CTE of the Al2O3@MWCNTs/epoxy composite was decreased from 66.44 ppm/oC to 52.5~45.1ppm/oC (decreased 21~32%) and was decreased from 253.1 ppm/oC to 215~201.1 ppm/oC (decreased 15~20.5%), respectively. The thermal conductivity of the Al2O3@MWCNTs/epoxy composite was increased from 0.13 W/mK to 1.01~1.1W/mK (increased 677~746%).

The third part of this research illustrates the preparation and characterization of functionalized MWCNTs/ alumina/ epoxy composites. This study investigates the electrical property, dielectrical property, thermal property and thermal conductivity of the hybrid composites with nano and micro fillers.
The hybrid composite was prepared with 5phr Al2O3@MWCNTs、20Vol% alumina and 80Vol% epoxy matrix. The volume resistivity and dielectrical constant of the Al2O3/Al2O3@MWCNTs/epoxy composite were 8.4723*1013~2.1991*1015Ω*cm and 4.41~4.69, respectively. The glass state CTE (coefficient of thermal expansion) and rubber state CTE of the Al2O3@MWCNTs/epoxy composite decreased from 50.16 ppm/oC to 40.27~40.58ppm/oC (decreased 21~32%) and decreased from 201.4 ppm/oC to 143~162.7 ppm/oC (decreased 19~29%), respectively. The thermal conductivity of the Al2O3@MWCNTs/epoxy composite increased from 0.13 W/mK to 1.52~1.95W/mK (increased 1069~1400%). The enhancement of thermal conductivity of hybrid composite was more significant comparising with 60Vol% alumina/ epoxy composite (1.58 W/mK). The overall performance of hybrid composite with nano and micro fillers exhibited sinficant improvement.
第一章 緒論 1
第二章 文獻回顧與理論基礎 5
2-1 環氧樹脂背景介紹 5
2-1-1 環氧樹脂簡介 5
2-1-2 環氧樹脂的性能和特性 8
2-1-3 環氧樹脂的硬化機制 11
2-2 奈米材料 14
2-2-1 碳奈米管起源 15
2-2-2 碳奈米管結構 16
2-2-3 碳奈米管之熱傳導性質[21] 20
2-2-4 碳奈米管之分散方法[23] 24
2-2-4-1 碳奈米管表面酸化反應[23] 26
2-2-4-2 自由基反應 27
2-2-4-3 環化加成反應 30
2-2-5 Friedel-Craft Acylation Reaction 33
2-2-6 無機物包覆碳奈米管文獻回顧 43
2-2-7 環氧樹脂/碳奈米管之複合材料文獻回顧 55
2-3 碳奈米管奈米複合材料熱傳導理論介紹 72
2-3-1 碳奈米管奈米複合材料熱傳導理論 73
2-3-2 熱傳導量測方式與原理[58] 78
2-3-3 碳奈米管複合材料應用於熱傳導之文獻回顧 80
第三章 研究目的與內容 89
3-1 研究目的 89
3-2 研究內容 93
第四章 實驗方法 95
4-1 實驗藥品 95
4-2 實驗儀器設備 100
4-3 實驗流程圖 103
4-4 實驗步驟 104
4-4-1 Friedel-Craft acylation法改質碳奈米管  (BTC-MWCNT) 104
4-4-2 Friedel-Craft acylation法改質碳奈米管  (GA-MWCNT) 105
4-4-3 矽氧烷偶合劑改質碳奈米管 106
4-4-4 以溶膠凝膠法包覆氧化矽於碳奈米管表面 109
4-4-5 以溶膠凝膠法包覆氧化鋁於碳奈米管表面 111
4-5 MWCNTs/Epoxy複合材料之製備 115
4-6 測試方法 116
第五章 結果與討論 121
5-1 Friedel-Crafts acylation法改質碳奈米管(BTC-MWCNT) 121
5-2 Friedel-Craft acylation法改質碳奈米管(GA-MWCNT) 128
5-3 以矽氧烷偶合劑改質BTC-MWCNT之鑑定 135
5-4 以矽氧烷偶合劑改質GA-MWCNT之鑑定 140
5-5 二氧化矽包覆碳奈米管之研究 148
5-6 三氧化二鋁包覆碳奈米管之研究 162
5-7 無機物包覆碳奈米管之分散性質研究 171
5-8 無機物包覆碳奈米管之電傳導性質研究 174
5-9 碳奈米管/環氧樹脂複合材料之SEM表面型態觀察 177
5-10 碳奈米管/環氧樹脂複合材料之電性質研究 180
5-11 碳奈米管/環氧樹脂複合材料之熱膨脹性質研究 190
5-12 碳奈米管/環氧樹脂複合材料之熱傳導性質研究 194
5-13 三氧化二鋁/奈米級三氧化二鋁包覆之碳奈米管/環氧樹脂之三元摻混複合材料之電性質 204
5-14 三氧化二鋁/奈米級三氧化二鋁包覆之碳奈米管/環氧樹脂之三元摻混複合材料之熱性質 208
5-15 三氧化二鋁/奈米級三氧化二鋁包覆之碳奈米管/環氧樹脂之三元摻混複合材料之熱傳導性質 212
第六章 研究總結論 218
第七章 參考文獻 229
[1] S. ijima, Helical microtubules of graphitic carbon Nature , 1991, 354
[2] 桓內弘 著,賴耿陽 譯,「環氧樹脂應用實務」,復漢出版社, 台北,1993
[3] 王春山,「環氧樹脂簡介與最近的發展(一)~(四) 」,化工技術,第二卷,第十期,第54頁,1994;第二卷,第十一期,第120頁 1994;第二卷,第十二期,第129頁,1994;第三卷,第一期,第166頁,1995。
[4] 馬振基、趙珏著,「高分子複合材料下冊、製程、檢測與應用」,華香園出版社,台北,2005
[5] 梁麗娜, 國立清華大學化學工程學系論文, 2007 馬振基教授指導
[6] 楊子慧, 國立清華大學化學工程學系論文, 2007 馬振基教授指導
[7] 蕭世明,「含磷/氮難燃高分子之製備與熱穩定性質」,國立中興大學碩士論文,2001
[8] 陳平、王德中編著,“環氧樹脂及其應用”, 化學工業出版社,北京 , 2004
[9] C. C. Riccardi, and R. J. J. Williams, Journal of Applied Polymer Science, 1986, 32, 3445,
[10] 奈米材料科技原理與應用,馬振基 編著, 93年3月
[11] H. W. Kroto, J.R. Heath, S. C. O’Brien, R.F. Curl, R.E. Smalley. C60:Buckminsterfullerene Nature 1985, 318, 162
[12] S. Ijima, Helical microtubules of graphitic carbon Nature 1991, 354
[13] S. Iijima, T. Ichihashi, Single shell carbon nanotubes of one diameter.Nature 1993,603-63
[14] T. Yamabe, Recent development of carbon nanotubes. Synthetic Met1995, 1511–8.
[15] M. R. Diehl, S. N. Yaliraki, R. A. Beckman, M. Barahona, J.P. Heath, Self-assembled, deterministic carbon nanotube wiring networks. Angewandte Chemie International Edition 2002, 41, 353
[16] G. Pirio, Fabrication and electrical characteristics of carbon nanotubefield emission microcathodes with an integrated gate electrode Nanotechnology 2002, 13
[17] M. Paradise , T. Goswami, Carbon nanotubes – Production and industrial applications, Materials and Design 2002, 28, 1477–89
[18] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Structure and Electronic Properties of Carbon Nanotubes Journal of Physical Chemistry B 2002, 104, 2794
[19] M. Paradise , T. Goswami, Carbon nanotubes – Production and industrial applications, Materials and Design 2007, 28 ,1477–89
[20] T. Belin, F. Epron,Characterization methods of carbon nanotubes: a review, Materials Science and Engineering B 2005, 119, 105–18
[21] N. W. Ashcroft, N. D. Mermin, Solid State Physics, 1975
[22] J. Wei, C. Tahir ¸ ag˘ ın and William A Goddard III, Thermal conductivity of carbon Nanotubes, Nanotechnology 2000, 11, 65–9
[23] A. Hirsch, O. Vostrowsky, Functionalization of carbon nanotubes, Top Curr Chem 2005, 245: 193–237
[24] Y. M. Ying, R. K. Saini, F. Liang, A. K. Sadana, W. E. Bulleps, Functionaliaztion of Carbon Nanotubes by Free Radicals Organic Letters 2003, 5, 1471
[25] S. Qin, Grafting of Poly(4-vinylpyridine) to Single-Walled Carbon Nanotubes and Assembly of Multilayer Films, Macromolecules 2004, 37, 9963-9967
[26] H. L. Wu, Molecular Mobility of Free-Radical-Functionalized Carbon-Nanotube/Siloxane/Poly(urea urethane)Nanocomposites,journal of Polymer Science: Part A: Polymer Chemistry 2003, 43, 6084-94
[27] M. Alvaro, Sidewall Functionalization of Single-Walled Carbon Nanotubes with Nitrile Imines. Electron Transfer from the Substituent to the Carbon Nanotube, J. Phys. Chem. B 2004, 108, 12691-126
[28] V. Georgakilas, Multipurpose Organically Modified Carbon Nanotubes: From Functionalization to Nanotube Composites, J. AM. CHEM. SOC. 2008, 130, 8733–40 9
[29] http://science.phy.ncu.edu.tw/program_office/fileresult/%E5%8C%96A/%E5%8C%9620-%E8%83%A1%E6%99%AF%E7%80%9A-1.pdf 中央大學化學實驗大綱 2008
[30] http://libdlm.lib.ntu.edu.tw/cpedia/Content.asp?ID=45951 中國大百科慧藏 2008
[31] J. B. Baek, L. S. Tan, Improved syntheses of poly(oxy-1,3-phenylenecarbonyl-1,4-phenylene) and related poly(ether–ketones) using polyphosphoric acid/P2O5 as polymerization medium, Polymer 2003, 44, 4135–47
[32] H. J. Lee, S. J. Oh, J. Y. Choi, J. W. Kim, J. Han, L. S. Tan, and J. B. Baek, In Situ Synthesis of Poly(ethylene terephthalate) (PET) in Ethylene Glycol Containing Terephthalic Acid and Functionalized Multiwalled Carbon Nanotubes (MWNTs) as an Approach to MWNT/PET Nanocomposites, Chem. Mater. 2005, 17, 5057-5064
[33] H. D. Wang, P. Mirau, B. Li, C. Y. Li, J. B. Baek, L. S. Tan, Solubilization of Carbon Nanofibers with a Covalently Attached Hyperbranched Poly(ether ketone), Chem. Mater. 2008, 20, 1502–15
[34] T. Seeger, Th. Köhler, Th. Frauenheim, N. Grobert, M. Rühle, M. Terrones and G. Seifertb, Nanotube composites: novel SiO2 coated carbon nanotubes, CHEM. COMMUN. 2002, 34–35
[35] Q. Fu, C. Lu, and J. Liu*, Selective Coating of Single Wall Carbon Nanotubes with Thin SiO2 Layer, Nano Lett. 2002, Vol. 2, No. 4
[36] T. Sainsbury and D. Fitzmaurice, Templated Assembly of Semiconductor and Insulator Nanoparticles at the Surface of Covalently Modified Multiwalled Carbon Nanotubes, Chem. Mater. 2004, 16, 3780-3790
[37] T. Wang, X. Hu, X. Qu, and S. Dong, Noncovalent Functionalization of Multiwalled Carbon Nanotubes: Application in Hybrid Nanostructures, J. Phys. Chem. B 2006, 110, 6631-36
[38] S. Guo, L. Huang and E. Wang, A novel hybrid nanostructure based on SiO2@carbon nanotube coaxial Nanocable, New J. Chem., 2007, 31, 575–79
[39] Q. Xiao, S. He, L. Liu, X. Guo, K. Shi, Z. Du, B. Zhang , Coating of multiwalled carbon nanotubes with crosslinked silicon-containing polymer, Composites Science and Technology 2008, 68, 321–8
[40] P. M. Ajayan, O.Stephan, C. Colliex, D. Trauth, Science 1994 Vol.265
[41] X. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young,Chem. Mater. 2000
[42] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, and A. T. Johnsond,Appl. Phys. Lett. 2002
[43] J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer1, A.H. Windle*, Polymer, 2003
[44] J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera, Nano Lett. 2003, Vol. 3, No. 8,
[45] J. Zhu, H. Peng, F. R. Macias, J. L. Margrave, V. N. Khabashesku, A. M. Imam, K. Lozano, and E. V. Barrera, Adv. Funct. Mater. 2004, 14
[46] S. J. V. Frankland, A, Caglar, D. W. Breener. M. Griebel, J. Phys. Chem. B 2002, 106 ,3046
[47] K.T. Lau , M. Lu , C.K. Lam , H.Y. Cheung , F.L. Sheng , H.L. Li, Composites Science and Technology , 2005
[48] C.A. Martina, J.K.W. Sandler, A.H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, Polymer 46, 2005, 877–86
[49] J.A. Kim, D.G. Seong, T. J. Kang, J. R. Youn, Carbon 44 , 2006, 1898–905
[50] C.H. Tseng, C.C. Wang, and C.Y. Chen, Chem. Mater. 2007, 19, 308-15
[51] L. Suna, G.L. Warrena, J.Y. O’Reillya, W.N. Everetta, S.M. Leea, D. Davisb, D. Lagoudasb, H.J. Suea ,Carbon. 2008, 46, 320-8
[52] H.J. Sue, K.T. Gam, N. Bestaoui, N. Spurr, A. Clearfield. Chem Mater 2004, 16, 242–9.
[53] W.J. Boo, L. Sun, J. Liu, A. Clearfield, H.J. Sue, M.J. Mullins et al. Morphology and mechanical behavior of exfoliated epoxy/ a-zirconium phosphate nanocomposites. Compos Sci Technol 2007, 67, 262–9.
[54] W.J. Boo, L. Sun, J. Liu, E. Moghbelli, A. Clearfield, H.J. Sue et al. Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites. J Polym Sci, Part B: Polym Phys 2007, 45, 1459–69.
[55] C.W. Nan , Z. Shi, Y. Lin, A simple model for thermal conductivity of carbon nanotube-based composites, Chemical Physics Letters 2003, 375 , 666–9
[56] C.W. Nan, G. Liu, Y. Lin, and M. Li, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett. 2004, Vol. 85, No. 16, 18
[57] S. Kumar, Effect of percolation on thermal transport in nanotube composites, Appl. Phys. Lett. 2007, 90 , 104105
[58] M.S. Dresselhausa,, G. Dresselhaus, R. Saitoc, A. Joriod, Raman spectroscopy of carbon nanotubes, Physics Reports 2005, 409, 47–99
[59] S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Effect of chemical functionalization on thermal transport of carbon nanotube composites, Appl. Phys. Lett., 2004, Vol. 85, No. 12, 20
[60] M. B. Bryning, D. E. Milkie, M. F. Islam, J. M. Kikkawa, and A. G. Yodh, Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites, Appl. Phys. Lett. 2005, 87, 161909
[61] A. Yu, M. E. Itkis, E. Bekyarova, and R.C. Haddon , Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites, Appl. Phys. Lett. 2005, 89, 133102
[62] F. Deng, Q.S. Zheng, and L.F. Wang, Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett. 2007, 90, 021914
[63] H.S. Kim, Y.S Chae, B.H. Park, J.S. Yoon, M. Kang and H.J. Jin, Thermal and electrical conductivity of PLLA/multiwalled carbon nanotube nanocomposites, Current Applied Physcs 2008, 8, 803-6
[64] P.C. Ma, B.Z. Tang and J.K. Kim, Effect of CNT decoration with siliver nanoparticles on electrical conductivity of CNT-polymer composites, Carbon 2008, 46, 1497-505
[65] M.S. Dresselhausa,, G. Dresselhaus, R. Saitoc, A. Joriod, Raman spectroscopy of carbon nanotubes, Physics Reports 2005, 409 ,47–99
[66] 洪文泰, 國立清華大學化學工程學系論文, 2007,戴念華教授指導
[67] B. Olalde, J. M. Aizpurua, A. Garcı, I. Bustero, I. Obieta, and M. J. Jurado, Single-Walled Carbon Nanotubes and Multiwalled Carbon Nanotubes Functionalized with Poly(L-lactic acid): a Comparative Study, J. Phys. Chem. C. 2008, 112, 10663–7
[68] S. E. Baker, W. Cai, T. L. Lasseter, K. P. Weidkamp,and R. J. Hamers, Convalently bonded adducts of Deoxyribonucleic acid(DNA) Oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization. Nano. Lett 2002, 2, 1413-7
[69] T. I. T. Okpalugo, P. Papakonstantinou , H. Murphy, J. Mclaughlin and N. M. D. Brown, High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs. Carbon 2005, 43, 153-61
[70] S. H. Liao, A. Y. Yen, C. H. Hung, C. C. Weng, M. C. Tsai, C. C. M. Ma et al, One-step functionalization of carbon nanotubes by free-radical modification for the preparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells. J Mater Chem 2008, 18, 3993-4002
[71] http://srdata.nist.gov/xps/Default.aspx NIST X-ray Photoelectron Spectroscopy Database
[72] Y. L. Hsin, K. C. Hwang, C. T. Yeh, Poly(vinylpyrrolidone) -Modified Graphite Carbon Nanofibers as Promising Supports for PtRu Catalysts in Direct Methanol Fuel Cells, J. AM. CHEM. SOC. 2007, 129, 9999-10010
[73] M. Shojaie-Bahaabad, E. Taheri-Nassaj, Economical synthesis of nano alumina powder using an aqueous sol-gel method, Mater. Lett. 2008, 62, 3364-3366
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top