跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳慈華
研究生(外文):Tzu-Hua Chen
論文名稱:溫度與光積值對洋桔梗生長與開花之影響模式
論文名稱(外文):Modeling the effects of temperature and photosynthetic daily light integral on growth and flowering of Eustoma
指導教授:葉德銘葉德銘引用關係
指導教授(外文):Der-Ming Yeh
口試委員:張育森郭華仁黃光亮
口試委員(外文):Yu-Sen ChangHua-Jen KuoKuang-Liang Huang
口試日期:2013-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:130
中文關鍵詞:種植到開花天數葉片分化花下葉片數相對長日植物溫度積值
外文關鍵詞:days from planting to floweringleaf initiationleaf number below the flowerquantitative long-day plantthermal time
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
洋桔梗[Eustoma grandiflorum (Raf.) Shinn.]為臺灣近年來重要的銷日切花作物。目前仍不完全清楚溫度與光對洋桔梗葉片分化、花芽創始及發育之影響模式,日本以15-20℃生長之花下葉片數和種植到開花天數為區分早中晚生品種之依據,是否可適用於臺灣地區,亦有待研究。
本研究取洋桔梗‘Claris Pink’、‘Rin’及‘Ceremony Blue Flash’涼溫培育穴盤苗,夏季(12.5-13.5 h自然日長)移至均溫14.0、17.6、22.6、27.7和32.7℃之自然光照室處理,其抽苔率皆達100%。三參試品種以22.6℃處理之葉片分化速率最快。三參試品種葉片分化之基礎溫度(base temperature)介於2.8-3.6℃,分化一片葉需26.3-31.3℃d 。三參試品種之花下葉片數及種植到花芽創始、可見花苞出現和開花天數隨參試溫度上升逐漸減少,品種間以晚生‘Ceremony Blue Flash’之花下葉片數及種植到花芽創始、可見花苞出現和開花天數明顯較‘Claris Pink’及‘Rin’為多。三參試品種自種植到花芽創始之基礎溫度為5.2-6.5℃,種植到花芽創始之溫度積值(thermal time),依早中晚生品種分別為353.1、424.9和518.0℃d,品種間具顯著差異。三參試品種節間長度隨參試溫度增加而增加,莖徑、葉片厚度、花徑與開花時地上部乾重則隨之下降。秋植(11-12 h自然日長)情況下,‘Ceremony Blue Flash’於22.5℃之葉片分化速率最快,葉片分化之基礎溫度為4.8℃,而分化一片葉需45.5℃d。花下葉片數和從種植到花芽創始、可見花苞出現及開花天數隨參試溫度降低(32.5℃至14.0℃)而增加,從種植到花芽創始溫度積值為1199.2℃d。
在4月-9月(12.5-13.5 h自然日長下),三參試品種種植於0%、65%、75%遮光之水牆溫室內,以未遮光處理之葉片分化速率最快,隨遮光程度增加葉片分化速率有逐漸下降之趨勢。隨著處理光積值增加,三參試品種之第一可見花苞下葉片數減少,從種植到花芽創始和到可見花苞出現天數亦縮短。種植於65%及75%遮光者發生花苞消蕾(blasting)或延遲開花,開花時株高較未遮光處理者高。洋桔梗‘Claris Pink’和‘Rin’之節間長度於遮光處理間無顯著差異,而‘Ceremony Blue Flash’節間長度則隨遮光程度增加而增長。
三參試品種種植於23/18℃、每日光照12 h之人工光照室,以高壓鈉燈提供光積值4.4、8.8、13.2及17.6 mol‧m-2‧d-1等處理。結果顯示三參試品種以光積值17.6 mol‧m-2‧d-1處理之葉片分化速率最快,且花下葉片數隨光積值增加而減少。晚生‘Ceremony Blue Flash’之花下葉片數較‘Claris Pink’及‘Rin’為多,在低光積值4.4-8.8 mol‧m-2‧d-1下,品種間之花下葉片數差距明顯。三參試品種從種植到花芽創始、可見花苞出現及到開花天數均隨光積值增加而縮短。三參試品種皆以低光積值4.4 mol‧m-2‧d-1處理之株高最高,節間長度亦較長。
三參試品種冬季種植於水牆溫室(18.7-24.3℃),進行不同光照處理,計有每日9 h自然日照(ND)、9 h自然日照+5 h 高壓鈉燈補光(ND with HID)、9 h自然日照+5 h鎢絲燈延長日照(ND+ I DE)、9 h自然日照+5 h高壓鈉燈延長日照(ND+ HID DE)及9 h自然日照+鎢絲燈暗期中斷(ND+ NI)等5處理。三參試品種於延長日照及暗期中斷等長日處理之花下葉片數較少,且從種植到可見花苞出現和到開花天數較短,而補光等提高光照亦能使洋桔梗花芽創始提早。三參試品種均以ND+ HID DE處理較早開花、植株高度較矮,且葉片較厚,而以ND+ I NI和ND+ I DE處理之節間長度較長,且具較多的花苞數,莖徑則以提高光照者較粗,花徑和花瓣數均以ND+ HID DE處理者較大、較多。
三參試品種分別種植於平均溫度20.5和25.5℃搭配光積值4.4、8.8、13.2及17.6 mol‧m-2‧d-1環境,共計8處理,計算求得花下葉片數、種植到可見花苞出現及開花天數之模式,與每隔兩週定植於塑膠溫室自然環境者進行驗證,結果顯示於臺灣自然日照11-13.5 h環境中,以溫度和光積值建立之模式能準確預測三參試品種之花下葉片數、種植到可見花苞出現及開花天數。


Lisianthus [Eustoma grandiflorum (Raf.) Shinn.] is an important cut flower crop in Taiwan for exportation to Japan. Modeling the effects of daily light integral and temperature on leaf initiation, flower initiation, and flower development of Eustoma is presently limited. Japanese growers define early- and late-flowering cultivars based on leaf number below the flower and days to flowering by growing plants at 15-20oC. However, it is required to determine whether this definition could be directly adapted to the growing conditions in Taiwan.
Plug seedlings of Eustoma ‘Claris Pink’, ‘Rin’, and ‘Ceremony Blue Flash’ were planted in phytotrons with mean temperatures of 14.0, 17.6, 22.6, 27.7, and 32.7oC in summer under 12.5-13.5 h natural daylengths. All plants bolted at 3 weeks after treatments. Optimum temperature for leaf initiation was 22.6oC for the three cultivars. Base temperature for leaf initiation was estimated to be 2.8-3.6oC, and thermal time of 26.3-31.3oCd was required for each leaf initiation. Leaf number below the flower and time from planting to flower initiation, flower bud visibility, and flowering decreased with increasing temperature from 14.0 to 32.7oC. Late-flowering ‘Ceremony Blue Flash’ had more leaf number below the flower and longer time to floral development than ‘Claris Pink’ and ‘Rin’. Base temperature for flower initiation was estimated as 5.2-6.5oC and thermal times required from planting to flower initiation were 353.1, 424.9, and 518.0oCd for ‘Claris Pink’, ‘Rin’, and ‘Ceremony Blue Flash’, respectively. Internode increased and stem diameter, leaf thickness, flower diameter, and shoot dry weight decreased with increasing temperature.
Optimum temperature for leaf initiation was estimated as 22.5oC for ‘Ceremony Blue Flash’ planted in autumn under 11-12 h natural daylengths. Base temperature for leaf initiation was 4.8oC and 45.5oCd was required for each leaf initiation. Leaf number below the flower, time from planting to flower initiation, flower bud visibility, and flowering increased with decreasing temperature from 32.5 to 14.0oC. Thermal time from planting to flower initiation was 1199.2oCd. Plug seedlings of the three Eustoma cultivars were planted in a pad and fan house with 0%, 65%, and 75% shading level. Leaf initiation rate was fastest in plants grown without shading, and decreased with increasing shading level. Leaf number below the first visible flower bud, time from planting to flower initiation and flower bud visibility increased with more shading. Delayed flowering or flower blasting was observed in plants grown under 65% and 75% shading. Plants grown under 65% and 75% shading were longer than those without shading. Shading did not affect internode of ‘Claris Pink’ and ‘Rin’, whereas internode of ‘Ceremony Blue Flash’ increased with increasing shading level.
Seedlings of the three cultivars were planted at 23/18oC in an artificial lighting room with 12 h photoperiod under 4.4, 8.8, 13.2, and 17.6 mol‧m-2‧d-1 daily light integral (DLI). Plants grown under 17.6 mol‧m-2‧d-1 had the highest leaf initiation rate. Leaf number below the flower decreased with increasing DLI. Late-flowering ‘Ceremony Blue Flash’ had more leaf number below the flower than ‘Claris Pink’ and ‘Rin’. Cultivar difference in leaf number below the flower was more obvious in plants under low DLI (4.4-8.8 mol‧m-2‧d-1) conditions. Time from planting to flower initiation, flower bud visibility, and flowering decreased with increasing DLI. Plant height and internode were higher and leaf was thinner in plants grown under 4.4 mol‧m-2‧d-1.
Seedlings of the three cultivars were planted under 9 h daylength (ND), 9 h ND + 5 h high-intensity discharge (HID) supplement lighting (ND with HID), 9h ND + 5 h incandescent light (I) bulb for day extension (DE) (ND + I DE), 9 h ND + 5 h HID for DE (ND + HID DE), and 9 h ND + 5 h I for night interruption (NI) (ND + I NI) in a pad and fan house. Fewer leaf number below the flower and shorter time from planting to flower bud visibility and flowering were recorded in plants grown under long day conditions. Earlier flower initiation and wider stem diameter were found in those grown under higher DLI. Plants were shorter and leaves were thicker when grown under ND + HID DE. ND + I NI and ND + I DE treatments resulted in longer internode and more flower buds. Branch number did not differ between these lighting treatments. Flower diameter and petal number were higher in plants grown under ND + HID DE.
Seedlings of the three cultivars were planted in an artificial room at 20.5 and 25.5 oC in combination with four daily light integrals of 4.4, 8.8, 13.2, and 17.6 mol‧m-2‧d-1. Modeling the effects of temperature and daily light integral were established for predicting leaf number below the flower, days from planting to flower bud visibility and flowering. The models were validated with sowing the seeds every two weeks and seedlings grown in a plastic greenhouse under 11.0-13.5 h daylengths in Taiwan.


摘要 I
Abstract III
目錄 V
表目錄 VII
圖目錄 IX
前言 (Introduction) IX
前人研究 (Literature Review) 3
一、 洋桔梗之形態與生長習性 3
二、 溫度對洋桔梗簇生化之影響 3
三、 溫度對洋桔梗等草本花卉生長與開花之影響 4
(一) 溫度三基點及溫度積值(thermal time) 4
(二) 溫度對草本花卉植株乾重之影響 5
(三) 溫度對草本花卉葉片分化及展開之影響 5
(四) 每日平均溫度對開花速率之影響 6
(五) 溫度對洋桔梗等草本花卉植株高度之影響 8
(六) 溫度對草本花卉花朵品質之影響 9
四、 遮光與光積值對洋桔梗等草本花卉生長與開花之影響 9
(一) 遮光與光積值對草本花卉光合作用與乾重之影響 9
(二) 光積值對洋桔梗等草本花卉葉片分化之影響 10
(三) 光積值對洋桔梗等草本花卉開花速率之影響 10
(四) 光積值對草本花卉植株高度與分枝數之影響 11
(五) 光積值對草本花卉花朵品質之影響 12
五、 光週期對洋桔梗等草本花卉開花之影響 12
六、以溫度和光積值建立草本花卉開花模式 14
材料與方法(Materials and Methods) 16
試驗一、溫度對夏植及秋植洋桔梗生長和開花之影響 16
試驗二、遮光程度對洋桔梗生長及開花之影響 19
試驗三、光積值對洋桔梗生長及開花之影響 20
試驗四、日長及光週期對洋桔梗生長開花之影響 21
試驗五、以溫度和光積值建立洋桔梗開花之模式 23
試驗六、以不同時間播種與栽培驗證洋桔梗開花模式 24
結果 (Results) 26
試驗一、溫度對夏植和秋植洋桔梗生長與開花之影響 26
試驗二、遮光程度對洋桔梗生長及開花之影響 31
試驗三、光積值對洋桔梗生長及開花之影響 32
試驗四、日長及光週期對洋桔梗生長及開花之影響 34
試驗五、以溫度和光積值建立洋桔梗開花之模式 36
試驗六、以不同時間播種與栽培驗證洋桔梗開花模式 39
討論 (Discussion) 104
試驗一、溫度對夏植及秋植洋桔梗生長與開花之影響 104
試驗二、遮光程度對洋桔梗生長及開花之影響 108
試驗三、光積值對洋桔梗生長及開花之影響 109
試驗四、日長及光週期對洋桔梗生長及開花之影響 111
試驗五、以溫度和光積值建立洋桔梗開花之模式 114
試驗六、以不同播種時間與栽培驗證洋桔梗開花模式 115
綜合討論與結論 (General Discussion and Conclusions) 117
參考文獻 (References) 121
附錄 (Appendix) 129

蔡宛育、陳彥樺. 2012. 洋桔梗栽培及利用專刊. 臺中農業改良場.
蔡宛育、陳彥樺、許謙信、易美秀、魏芳明. 2012. 提高洋桔梗生育及切花品質. 臺中區農業專訊. 臺中. 臺灣.
簡嘉緯. 2010. 洋桔梗苗期溫度與藥劑處理對其簇生化形態之探討. 國立臺灣大學園藝學系碩士論文.
八代嘉昭. 1994. トルコギキョウをつくりこなす. 農文協. 東京.
大川清. 1993. 花專科* 育種と栽培. トルコギキョウ誠文堂新光社. 東京.
塚田晃久. 1980. トルコギキョウ の生理、生態と作型. 農耕と園藝35:143-145.
Adams, S., S. Pearson, and P. Hadley. 1998. The effect of temperature on inflorescence initiation and subsequent development in chrysanthemum cv. Snowdon (Chrysanthemum morifolium Ramat.). Scientia Hort. 77:59-72.
Adams, S.R., S. Pearson, and P. Hadley. 1997. The effects of temperature, photoperiod and light integral on the time to flowering of pansy cv. Universal Violet (Viola ×wittrockiana Gams.). Ann. Bot. 80:107-112.
Atherton, J.G., D.M. Yeh, J. Craigon, and G.A. Tucker. 1998. Leaf initiation and shoot apical diameter in relation to phase transition in cineraria. J. Hort. Sci. Biotechnol. 73:45-51.
Baloch, J.U.D., M. Qasim Khan, M. Zubair, and M. Munir. 2009. Effects of different shade levels (light integrals) on time to flowering of important ornamental annuals. Intl. J. Agr. Biol. 11:138-144.
Blanchard, M.G. and E.S. Runkle. 2011. Energy-efficient greenhouse production of Petunia and Tagetes by manipulation of temperature and photosynthetic daily light integral. Acta Hort. 893:857-864.
Blanchard, M.G. and E.S. Runkle. 2011. Quantifying the thermal flowering rates of eighteen species of annual bedding plants. Scientia Hort. 128:30-37.
Blanchard, M.G., E.S. Runkle, and P.R. Fisher. 2011. Modeling plant morphology and development of petunia in response to temperature and photosynthetic daily light integral. Scientia Hort. 129:313-320.
Brondum, J.J. and R.D. Heins. 1993.Modeling Temperature and photoperiod effects on growth and development of dahlia. J. Amer. Soc. Hort. Sci.118:36-42.
Cave, R.L., G.L. Hammer, G. McLean, C.J. Birch, J.E. Erwin, and M.E. Johnston. 2013. Modelling temperature, photoperiod and vernalization responses of Brunonia australis (Goodeniaceae) and Calandrinia sp. (Portulacaceae) to predict flowering time. Ann. Bot. 111:629-639.
Cheon, I.H., and O. Wook. 2006. Long day and high photosynthetic photon flux promote the growth and flowering of Cyclamen persicum. Hort. Environ. Biotechnol. 47:353-358.
Clough, E.A., A.C. Cameron, R.D. Heins, and W.H. Carlson. 2001. Crowth and development of Oenothera fruticosa is influences by vernalizatoin duration, photoperiod, forcing temperature, and plant growth regulators. J. Amer. Soc. Hort. Sci. 126:269-274.
Faust, J.E., V. Holcombe, N.C. Rajapakse, and D.R. Layne. 2005. The effect of daily light integral on bedding plant growth and flowering. HortScience 40:645-649.
Gesch, R.W., N.W. Barbour, F. Forcella, and W.B. Voorhees. 2002. Cuphea growth and development: Responses to temperature, p. 213-215. In: J. Janick, and A. Whipkey (eds.), Trends in new crops and new uses. ASHS Press, Alexandria, VA.
Goh, C.H., S.M. Ko, S. Koh, Y.J. Kim, and H.J. Bae. 2012. Photosynthesis and environments: Photoinhibition and repair mechanisms in plants. J. Plant Biol. 55:93-101.
Grueber, K., B. Corr, and H. Wilkins. 1984. Eustoma grandiflorum (Lisianthus russellianus). Minn. State Flor. Bull. 33:10-14.
Halevy, A. and A. Kofranek. 1984. Evaluation of lisianthus as a new flower crop. HortScience 19:845-847.
Halevy, A.H. 1989. Eustoma grandiforum, p. 322-329. In: S.M. Roh, A.H. Halevy, and H.F. Wilkins (eds.). Handbook of flowering. CRC. Press, Boca Raton, Florida.
Harbaugh, B.K. 1988. Scheduling lisianthus (Eustoma grandiflorum) production. Gulf Coast Res. and Educ. Ctr. Res. Rpt. BRA1998-25.
Harbaugh, B.K. 1995. Flowering of Eustoma grandiflorum (Raf.) Shinn. cultivars influenced by photoperiod and temperature. HortScience 30:1375-1377.
Harbaugh, B.K., M.S. Roh, R.H. Laeson, and B. Pemberton. 1992. Rosetting of lisianthus cultivars exposed to high temperature. HortScience. 27:885-887.
Islam, N., G.G. Patil, and H.R. Gislerod. 2005. Effect of photoperiod and light integral on flowering and growth of Eustoma grandiflorum (Raf.) Shinn. Scientia Hort. 103:441-451.
Kawakatsu, K., A. Ushio, and N. Fukuta. 2012. Anatomical characterization of flower-bud blasting and suppression following hormone application in Eustoma grandiflorum (Raf.) Shinn. J. Jpn. Soc. Hort. Sci. 81:101-108.
Keever, G.J., J. Kessler, and J.C. Stephenson. 2001. Accelerated flowering of herbaceous perennials under nursery conditions in the southern United States. J. Environ. Hort. 19:140-144.
Keever, G.J., J. Kessler, and J.C. Stephenson. 2006. Night-Interrupted lighting accelerates flowering of herbaceous perennials under nursery conditions in the southern United States. J. Environ. Hort. 24:23-28.
Lugassi-Ben-Hamo, M., M. Kitron, A. Bustan, and M. Zaccai. 2010. Effect of shade regime on flower development, yield, and quality in lisianthus. Scientia Hort. 124:248-253.
Moccaldi, L.A. and E.S. Runkle. 2007. Modeling the effects of temperature and photosynthetic daily light integral on growth and flowering of Salvia splendens and Tagetes patula. J. Amer. Soc. Hort. Sci. 132:283-288.
Munir, M., M. Jamil, and K.R. Khattak. 2004. Impact of light intensity on flowering time and plant quality of Antirrhinum majus L. cultivar Chimes White. J. Zhejiang Univ. Sci. 5:400-405.
Munir, M., M. Jamil, J. Baloch, and K. Khattak. 2004. Growth and flowering of Antirrhinum majus L. under varying temperatures. Intl. J. Agri. Biol. 6:173-178.
Myster, J. and R. Moe. 1995. Effect of diurnal temperature alternations on plant morphology in some greenhouse crops-a mini review. Scienia Hort. 62:205-215.
Nemali, K.S. and M.W. van Iersel. 2004 Light effects on wax begonia: Photosynthesis, growth respiration, maintenance respiration, and carbon use efficiency. J. Amer. Soc. Hort. Sci. 129:416-424.
Niu, G., R.D. Heins, A.C. Cameron, and W.H. Carlson. 2000. Day and night temperature, daily light integral, and CO2 enrichment affect growth and flower development of pansy (Viola ×wittrockiana). J. Amer. Soc. Hort. Sci. 125:436-441.
Oh, W., I.H. Cheon, K.S. Kim, and E.S. Runkle. 2009. Photosynthetic daily light integral influences flowering time and crop characteristics of Cyclamen persicum. HortScience 44:341-344.
Oh, W., E.S. Runkle, and R.M. Warner. 2010. Timing and duration of supplemental lighting during the seedling stage influence quality and flowering in petunia and pansy. HortScience 45:1332-1337.
Ohkawa, K., A. Kano, K. Kanematsu, and M. Korenaga. 1991. Effects of air temperature and time on rosette formation in seedlings of Eustoma grandiflorum (Raf.) Shinn. Scientia Hort. 48:171-176.
Ohkawa, K., T. Yoshizumi, M. Korenaga, and K. Kanematsu. 1994. Reversal of heat-induced rosetting in Eustoma grandiflorum with low temperatures. HortScience 29:165-166.
Paradiso, R., S. Fiorenza, and S.D. Pascale. 2007. Light requirements for flowering of Lisianthus. Acta Hort. 801:1155-1160.
Pearson, S., P. Hadley, and A.E. Wheldon. 1993. A reanalysis of the effects of temperature and irradiance on time of flowering in chrysanthemum (Dendranthema grandiflora). J. Hortic. Sci. 68:89-97.
Pergola, G. 1990. The need for vernalization in Eustoma russellianum. Scientia Hort. 51:123-127.
Pien, H., R. Lemeur, and M.C. Labeke. 2000. Influence of PAR flux and temperature on the flower bud abortion of rose (Rosa hybrida ‘Frisco’) and the carbon balance of the shoot. Acta Hort. 515:119-127.
Pietsch, G.M., W.H. Carlson, R.D. Heins, and J.E. Faust. 1995. The effect of day and night temperature and irradiance on development of Catharanthus roseus (L.) ‘Grape Cooler’. J. Amer. Soc. Hort. Sci. 120:877-881.
Pramuk, L.A. and E.S. Runkle. 2005a. Modeling growth and development of Celosia and Impatiens in response to temperature and photosynthetic daily light integral. J. Amer. Soc. Hort. Sci. 130:813-818.
Pramuk, L.A. and E.S. Runkle. 2005b. Photosynthetic daily light integral during the seedling stage influences subsequent growth and flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola. HortScience 40:1336-1339.
Roberts, E.H. and R.J. Summerfield. 1987. Measurement and prediction of flowering in annual crops, p. 17-50. In: J.G. Atherton (ed.). Manipulation of flowering. Butterworths, London, UK.
Roh, M.S., A.H. Halevy, and H.F. Wins. 1989. Eustoma grandiflorum, p, 322-327. In: A.H. Halevy (ed.). Handbook of flowering. vol. VI. Crit. Rev. Plant Sci. Nutr. Press, Boca Raton, Fla.
Runkle, E.S. and R.D. Heins. 2006. Manipulating the light environment to control flowering and morphogenesis of herbaceous plants. Acta Hort. 711:51-59.
Thomas, B. 2006. Light signals and flowering. J. Expt. Bot. 57:3387-3393.
Torres, A.P. and R.G. Lopez. 2011. Photoperiod and temperature influence flowering responses and morphology of Tecoma stans. HortScience 46:416-419.
Trudgill, D.L., A. Honek, D. Li, and N.M. van Straalen. 2005. Thermal time – concepts and utility. Ann. Appl. Biol. 146:1-14.
United States Department of Agriculture. 2012. National Agricultural Statistics Service, Floriculture Crops.
van der Ploeg, A. and E. Heuvelink. 2006. The influence of temperature on growth and development of chrysanthemum cultivars: A review. J. Hort. Sci. Biotechnol. 81:174-182.
van der Ploeg, A., R.J. Kularathne, S.M. Carvalho, and E. Heuvelink. 2007. Variation between cut chrysanthemum cultivars in response to suboptimal temperature. J. Amer. Soc. Hort. Sci. 132:52-59.
Warner, R.M. 2010. Temperature and photoperiod influence flowering and morphology of four Petunia spp. HortScience 45:365-368.
Warner, R.M. and J.E. Erwin. 2003. Effect of photoperiod and daily light integral on flowering of five Hibiscus sp. Scientia Hort. 97:341-351.
Warner, R.M. and J.E. Erwin. 2005. Prolonged high temperature exposure and daily light integral impact growth and flowering of five herbaceous ornamental species. J. Amer. Soc. Hort. Sci. 130:319-325.
Whitman, C.M., R.D. Heins, A.C. Cameron, and W.H. Carlson. 1997. Cold treatment and forcing temperature influence flowering of Campanula capatica ‘Blue Clips’. HortScience 32:861-865.
William, M.Y., H. Carlson, R.D. Heins, and A.C. Cameron. 1998. Effect of forcing temperature on time to flower of Coreopsis grandiflora, Gaillardia ×grandiflora, Leucanthemum ×superbum, and Rudbeckia fulgida. HortScience 33:663-667.
Willits, D. and D. Bailey. 2000. The effect of night temperature on chrysanthemum flowering: Heat-tolerant versus heat-sensitive cultivars. Scientia Hort. 83:325-330.
Yamada, A., T. Tanigawa., T. Suyama., T. Matsuno, and T. Kunitake. 2008. Night break treatment using different light sources promotes or delays growth and flowering of Eustoma grandoflorum (Raf.) Shinn. J. Jpn. Soc. Hort. Sci. 77:69-74.
Yamada, A., T. Tanigawa, T. Suyama, T. Matsuno, and T. Kunitake. 2009. Red: far-red light ratio and far-red light integral promote or retard growth and flowering in Eustoma grandiflorum (Raf.) Shinn. Scientia Hort. 120:101-106.
Yamada, A., Tanigawa, T., Suyama, T., Matsuno, T. and Kunitake, T. 2011. Effects of red:far-red light ratio of night-break treatments on growth and flowering of Eustoma grandiflorum (Raf.) Shinn. Acta Hort. 907:313-317
Yamashita, M. and H. Imamura. 2007 Shoot and root growth and lysigenous aerenchyma formation in rosette and stem-extensional plants of Eustoma grandiflorum (Raf.) Shinn. J. Jpn. Soc. Hort. Sci. 76:54-59.
Yeh, D.M. 1996. Manipulation and predictive modelling of flowering in cineraria. Nottingham Univ., U.K., PhD Diss.
Yeh, D.M., J.G. Atherton, and J. Craigon. 1999. A thermal time model of post-initiation flower development in shade plant, cineraria. Ann. Appl. Biol. 134:335-340.
Yuan, M., W.H. Carlson, R.D. Heins, and A.C. Cameron. 1998. Effect of forcing temperature on time to flower of Coreopsis grandiflora, Gaillardia ×grandiflora, Leucanthemum ×superbum, and Rudbeckia fulgida. HortScience 33:663-667.
Yumoto, H.S., K. Ichimura. 2010. Postharvest physiology and technology of cut Eustoma flowers. J. Jpn. Soc. Hort. Sci. 79:227-238.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top