跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林群評
研究生(外文):Chiun-Ping Lin
論文名稱:利用雷利-里茲法探討非等向性圓板之非對稱模態振動與穩定性分析
論文名稱(外文):Asymmetric Vibration and Stability of Circular Plates with Orthotropic Material Properties by Using Rayleigh-Ritz Method
指導教授:張英俊張英俊引用關係
指導教授(外文):Ying-Chun Chang
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:112
中文關鍵詞:臨界挫曲非等向性圓/圓環板剪力變形旋轉慣量同心圓支撐平面負荷平面扭力雷利-里茲法彈性支撐
外文關鍵詞:bucklingcircular/annular plateconcentric ring supportsflexibilityin-plane forcein-plane torqueorthotropicRayleight-Ritz''s Methodrotary inertiashear deformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
本文所探討分為兩部分,一是考慮剪力變形與旋轉慣量之非等向性圓環板的振動與臨界挫曲負荷,包含CF(內徑固定外徑自由)與SS(內徑外徑簡支撐)之不同邊界條件;另一則是探討同心圓支撐,對提升非等向性圓環板臨界挫曲負荷的有效性評估,而此圓環板分別承受平面負荷與扭力。

為求解此穩定性問題,將圓環板的位移函數分別以三角級數及Power Series函數,代入系統之應變能、動能與外力所做的功,再利用雷利-里茲法求得系統之自然頻率與臨界負荷。針對不同邊界條件來探討圓環板厚度、材料剛性比、彈性支撐和同心圓支撐位置的變化,對自然頻率的影響與臨界挫曲負荷之穩定性分析,並以圖表表示之。
Investigation in this research is divided into two parts. One is the consideration on the vibration and buckling load of the orthotropic annular plate taking account of shear deformation and rotary inertia, including CF (clamped at inner edge and free at outer edge) and SS (simply supported at inner edge and outer edge) boundary conditions. The other part is to investigate the effect of concentric ring supports on the effectiveness of the enhancement of the buckling load of the orthotropic annular plate. This annular plate bears the in-plane force and torque separately in the mathematical formulation.

In order to solve this stability problem, the position shift functions of the annular plate shall utilize the trigonometric series and power series function that will be substituted into the work made by the potential energy, kinetic energy and external force. Then the natural frequency and the buckling load of the system are obtained by utilizing the Rayleight-Ritz’s Method. Aiming at different boundary conditions, investigation is conducted on the thickness of the annular plate, orthotropic rigidity ratio, flexibility and the concentric ring supports position change. Analysis is conducted on the effect of the natural frequency and the stability of the buckling load that will be expressed by diagram and chart.
ACKNOWLEDGEMENTS…………………………….………………...........I
ENGLISH ABSTRACT……………..…………………………………….....II
CHINESE ABSTRACT……………………………………………….........IV
TABLE OF CONTENTS………………………….……………….…….......V
LIST OF TABLES……………………………….……………………....VIII
LIST OF FIGURES……………………………………………………….....X
CHAPTER 1 INTRODUCTION…………………………………………........1
1.1 Motivation…………………………….………………….………..1
1.2 Literature Review……………………………….………………..3
1.3 Scope of the Present Study………………………………………6
CHAPTER 2 THEORETICAL ANALYSIS…………………..…….…….......8
2.1 Orthotropic material property………………………………….8
2.2 Energy equation…………………………………………………..11
2.3 Vibration and stability of orthotropic Mindlin plates
under in-plane load………………………………………………14
2.3.1 The orthotropic Mindlin annular plate with CF
boundary condition……………………………….…………14
a. Stress due to in-plane force………………….……...…14
b. Rayleigh-Ritz’s Method…………………….…….……….16
c. Dimensionless form………………………..………………..21
2.3.2 The orthotropic Mindlin annular plate with SS
boundary condition………………………………………….25
a. Stress due to in-plane force………………….………...25
b. Rayleigh-Ritz’s Method……………………….….……….26
c. Dimensionless form……………..……………………….….29
2.4 Vibration and stability of orthotropic thin plates under
in-plane load/torque…………………………………………….30
2.4.1 The orthotropic annular plate with one or two
internal ring supports…………………………………….30
a. Stress due to in-plane force……………..……..………30
b. Rayleigh-Ritz’s Method……………….…….…………….31
c. Dimensionless form……………………….…………..…….36
CHAPTER 3 RESULTS AND DISCUSSION………….……………..…......40
3.1 Study of convergence……………………….……………………41
3.2 Vibration and stability of orthotropic Mindlin plates
under in-plane load………………………………………………43
3.2.1 Effect of the orthotropic Mindlin annular plate for
in-plane load…………………………………….………….43
3.2.2 Effect of the orthotropic Mindlin annular plate for
thickness………………………………………………….….46
3.2.3 Effect of the orthotropic Mindlin annular plate for
flexibility……………………………………………………48
3.2 Vibration and stability of orthotropic thin plates under
in-plane load/torque…………………………………………….51
3.2.1 Effect of the orthotropic annular plate with one
internal ring support for in-plane load………………50
3.2.2 Effect of the orthotropic annular plate with two
internal ring supports for in-plane load…………….54
3.2.3 Effect of the orthotropic annular plate with two
internal ring supports for in-plane torque………….58
CHAPTER 4 CONCLUSIONS……………...……….………………….....106
REFERENCES……………………………………….……..………….....109
1. R. D. Mindlin, “Influence of Rotary Inertia and Shear in
Flexural Motion of Isotropic, Elastic Plates”, ASME,
Journal of Applied Mechanics, Vol.18, pp.1031-1036, 1951.
2. R. D. Mindlin and H. Dereciwicz, “Thickness-Shear and
Flexural Vibration of a Circular Disk”, ASME, Journal of
Applied Physics, Vol.25, pp.1329-1332, 1954.
3. R. D. Mindlin and H. Dereciwicz, “Axially Symmetric
Flexural Vibrations of a Circular Disk”, ASME, Journal of
Applied Mechanics, Vol.22, No.1, pp.86-88, 1955.
4. S. S. Rao and A. S. Prasad, “Vibration of Annular Plates
Including the Effect of Rotary Inertia and Transverse Shear
Deformation”, Journal of Sound and Vibration, Vol.42,
No.3, pp.305-324, 1975.
5. T. Irie, G. Yamada and S. Aomura, “Free Vibration of a
Mindlin Annular Plates of Varying Thickness”, Journal of
Sound and Vibration, Vol.66, No.2, pp.187-197, 1979.
6. T. Irie, G. Yamada and K. Takage, “Natural Frequencies of
Thick Annular Plates,” Journal of Applied Mechanics,
Vol.49, No.9, pp.633-638. 1982.
7. S. H. Jang, “Effects of Thickness Variation for the
Dynamic Characteristics of Annular Plates Including the
Shear Deformation and Rotary Inertia”, JSME International
Journal, Series C, Vol.44, No.1, pp.30-36, 2001.
8. U. S. Gupta and R. Lal, “Axisymmetric Vibration of Polar
Orthotropic Mindlin Annular Plates of Variable Thickness,”
Journal of Sound and Vibration, Vol.42, pp.57-63, 1975.
9. S. R. Soni and C. L. Amba-Rao, “Axisymmetric Vibration of
Polar Orthotropic Mindlin Annular Plates of Variable
Thickness”, Journal of Sound and Vibration, Vol.42, pp.57-
63, 1975.
10. K. A. V. Pandalai and A. Patel, “Buckling of Orthotropic
Circular Plates,” Journal of the Royal Aeronautical
Society, Vol.69, pp.279-280, 1965.
11. R. K. Jain, “Vibration of Circular Plates of Variable
Thickness under Plane Force,” Journal of Sound and
Vibration, Vol.23, pp.407-414, 1972.
12. G. C. Pardoen, “Asymmetric Vibration and Stability of
Circular Plates,” Computers and Structures, Vol.9, pp.89-
95, 1978.
13. P. A. A. Laura, D. R. Avalos and C. D. Galles, “Vibration
and Elastic Stability of Polar Orthotropic Circular Plates
of Linearly Varying Thickness,” Journal of Sound and
Vibration, Vol.82, pp.151-156, 1982.
14. D. G. Gunaratnam and A. P. Bhattacharya, “Transverse
Vibration and Stability of Polar Orthotropic Circular
Plates,” Journal of Sound and Vibration, Vol.137, pp.383-
392, 1989.
15. J. Cheng Chang and A. J. M. Spencer, “Non Axisymmetric
Instability of Polar Orthotropic Annular Plates,” Journal
of Engineering and Mathimatics, Vol.23, pp.29-51, 1989.
16. C. M. Wang, Y. Xiang, S Kitipornchai and K. M. Liew,
“Axisymmetric Buckling of circular Mindlin Plates,”
ASCE, Journal of Structural Engineers, Vol.119, pp.782-
793, 1993.
17. K. M. Liew, Y. Xiang and S. Kitipornchai, “Buckling and
Vibration of Annular Mindlin Plates with Internal
Concentric Ring Supports Subjected to in Plane Pressure,”
Journal of Sound and Vibration, Vol.177, pp.689-707, 1994.
18. B. Bhushan, G. Singh and G. Venkateswara Rao, “Buckling
of Tapered Orthotropic Circular Plates using a
Computationally Economic Approach,” Journal of Computers
and Structures, Vol.46, pp.421-428, 1993.
19. B. Bhushan, G. Singh and G. Venkateswara Rao, “Asymmetric
Buckling of Layered Orthotropic Circular and Annular
Plates of Varying Thickness using a Computationally
Economic Semi Analytic Finite Element Approach,” Journal
of Computers and Structures, Vol.59, pp.21-33, 1996.
20. U. S. Gupta and R. Lal, “Buckling and Vibration of
Circular Plates of Variable Thickness,” Journal of Sound
and Vibration, Vol.58, pp.501-507, 1978.
21. U. S. Gupta, R. Lal and C. P. Verma, “Buckling and
Vibration of Polar Orthotropic Annular Plates of Variable
Thickness,” Journal of Sound and Vibration, Vol.104,
pp.357-369, 1986.
22. U. S. Gupta, R. Lal and R. Sagar, “Effect of Elastic
Foundation on Axisymmetric Vibration of Polar Orthotropic
Mindlin Circular Plates,” Indian Journal of Pure and
Applied Mathematics, Vol.25, pp.1317-1326, 1994.
23. U. S. Gupta, R. Lal and S. K. Jain, “Buckling and
Vibration of Polar Orthotropic Circular Plates of Linearly
Varying Thickness Resting on an Elastic Foundation,”
Journal of Sound and Vibration, Vol.147, pp.423-434, 1991.
24. U. S. Gupta and A. H. Ansari, “Asymmetric Vibration and
Elastic Stability of Polar Orthotropic Circular Plates of
Linearly Varying Profile,” Journal of Sound and
Vibration, pp.231-250, 1998.
25. P. A. A. Laura and R. H. Gutierrez, “Free Vibration of a
Solid Circular Plate of Linearly Varying Thickness and
Attached to a Winkler Type Foundation,” Journal of Sound
and Vibration, Vol.144, pp.149-167, 1991.
26. R. H. Gutierrez, E. Romanelli and P. A. A. Laura,
“Vibration and Elastic Stability of Thin Circular Plates
with Variable Profile,” Journal of Sound and Vibration,
Vol.195, pp.391-399, 1996.
27. R. Y. Bondine, “The Fundamental Frequency of a Thin,
Flat, Circular Plate Simply Supported Along a Circle of
Arbitrary Radius,” Transaction of the Society of
Mechanical Engineers, Journal of Applied Mechanics,
Vol.E26, pp.666-668, 1959.
28. R. Y. Bondine, “Vibration of a Circular Plate Supported
by a Concentric Ring of Arbitrary Radius,” Journal of the
Acoustical Society of America, Vol.41, pp.1551, 1967.
29. A. V. Singh and S. Mirza, “Free Axisymmetric Vibration of
a Circular Plate Elastically Supported Along Two
Concentric Circles,” Journal of Sound and Vibration,
Vol.48, pp.425-429, 1976.
30. K. Nagaya, “Free Vibration of a Solid Plate of Arbitrary
Shape Lying on an Arbitrarily Shaped Ring Support,”
Journal of Sound and Vibration, Vol.94, pp.71-85, 1984.
31. H. C. Sanzi, P. A. A. Laura and V. H. Cortinez,
“Fundamental Frequency of Vibration of a Circular Plate
with Two Concentric Circular Supports,” Journal of Sound
and Vibration, Vol.122, pp.393-395, 1988.
32. P. A. A. Laura, R. H. Gutierrez, V. H. Cortinez and J. C.
Utjes, “Transverse Vibration of Circular Plates and
Membranes with Intermediate Support,” Journal of Sound
and Vibration, Vol.113, pp.81-86, 1987.
33. C. M. Wang and V. Thevendran, “Vibration Analysis of
Annular Plates with Concentric Supports Using a Variant of
Rayleigh-Ritz Method,” Journal of Sound and Vibration,
Vol.163, pp.137-149, 1993.
34. K. M. Liew and C. M. Wang, “pb-2 Rayleigh-Ritz Method for
General Plate Analysis,” Engineering Structures, Vol.15,
pp.55-60, 1993.
35. K. M. Liew and K. Y. Lam, “Transverse Vibration of Solid
Circular Plates Continuous Over Multiple Concentric
Annular Supports,” Transaction of the Society of
Mechanical Engineers, Journal of Applied Mechanics,
Vol.60, pp.208-210, 1993.
36. K. M. Liew, Y. Xiang, C. M. Wang and S Kitipornchai,
“Flexural Vibration of Shear Deformable Circular and
Annular Plates on Ring Supports,” Computational Methods
in Applied Mechanical Engineering, Vol.110, pp.301-315,
1993.
37. K. M. Liew, Y. Xiang, S Kitipornchai and C. M. Wang,
“Buckling and Vibration of Annular Mindlin Plates with
Internal Concentric Ring Supports Suject to In-Plane
Radial Pressure,” Journal of Sound and Vibration,
Vol.177, No.5, pp.689-707, 1994.
38. J. Tani and T. Nakamura, “Dynamic Stability of Annular
Plates under Pulsating Torsion,” Journal of Applied
Mechanics, Transactions of the American Society of
Mechanical Engineers, Vol.47, pp.595-600, 1980.
39. J. Tani, “Dynamic Stability of Orthotropic Annular Plates
under Pulsating Torsion,” Journal of the Acoustical
Society of America, Vol.69, pp.1688-1694, 1981.
40. T. Irie, G. Yamada and M. Tsujino, “Vibration and
Stability of a Variable Thickness Annular Plate Subjected
to a Torque,” Journal of Sound and Vibration, pp.277-285,
1982.
41. T. Y. Reddy and H. Srinath, “Elastic Stresses in a
Rotating Anisotropic Annular Disk of Variable Thickness
and Variable Density,” int. J. Mech. Sci. Pergamon
Press., Vol.16, pp.85-89, 1974.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top