|
[1]Savart, F., Memoire sur la constitution des veines liquides lancees par des orifices circulaires en mince paroi, Ann. Chim., 53, 337-386,1833 [2]Lord Rayleigh, J. W. S., On the instability of jets, Proceedings of the London Mathmetical Society, 10, 4-13, 1878 [3]Lord Rayleigh, J. W. S., On the capillary phenomena of jets, Pro. R. Soc. Lond., 29, 71-97, 1879 [4]Lord Rayleigh, J. W. S., On the instability of cylinder of viscous liquid under capillary forces, Pilos. Mag., 34, 145-154, 1892 [5]Weber, C., Zum Zerfall eines Flüssigkeitsstrahles, Zeitschrift für Angewandte Mathematik und Mechanik, 11, 136-154, 1931 [6]Tomotika, S., On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid, Proc. R. Soc. Lond. A, 150, 322–337, 1935 [7]Keller, J.B., Rubinow, S. I. & Tu, Y. O., Saptial instability of a jet, Phys. Fluids, 16, 2052-2055, 1973 [8]Leib, S. J. & Goldstein, M. E., Convective and absolute instability of a viscous liquid jet, Phys. Fluids, 29, 952–954, 1986 [9]Goedde, E. F. & Yuen, M. C., Experiments on liquid jet instability, J. Fluid Mech., 40, 495–511, 1970 [10]Yuen, M. C., Non-linear capillary instability of a liquid jet, J. Fluid Mech., 33, 151-168, 1968 [11]Pimbley, W. T. & Lee, H.C., Satellite droplet formation in a liquid jet, IBM J. Res. Dev., 21, 21–30, 1977 [12]Chaudhary, K. C. & Maxworthy, T., The nonlinear capillary instability of a liquid jet. Part 2. Experiments on jet behavior before droplet formation, J. Fluid Mech., 96, 275–286, 1980 [13]Chaudhary, K. C. & Maxworthy, T. The nonlinear capillary instability of a liquid jet. Part 3. Experiments on satellite drop formation and control, J. Fluid Mech., 96, 287–298, 1980 [14]Vassallo, P. & Ashgriz, N., Satellite formation and merging in liquid jet breakup. Proc. R. Soc. Lond. A, 433, 269–286, 1991 [15]Orme, M. & Muntz, E. P., The manipulation of capillary stream breakup using amplitude-modulated disturbances: A pictorial and quantitative representation, Phys. Fluids A, 2(7), 1124–1140, 1990 [16]Orme, M., Willis, K. & Nguyen, T.-V., Droplet patterns from capillary stream breakup, Phys. Fluids A, 5(1), 80–90, 1993 [17]Chaudhary, K. C. & Redekopp, L. G., The nonlinear capillary instability of a liquid jet. Part 1, Theory. J. Fluid Mech., 96, 257–274, 1980 [18]Nayfeh, A. H., Non-linear stability of a liquid jet, Phys. Fluids, 13, 841–847, 1970 [19]Rutland, D. F. & Jameson, G. J., Theoretical prediction of the size of drops form in the breakup of capillary jets, Chem. Eng. Sci., 25, 1689-1698, 1970 [20]Lafrance, P., Nonlinear breakup of a laminar liquid jet, Phys. Fluids, 18, 428–432, 1975 [21]Bogy, D. B., Drop formation in a circular liquid jet, Ann. Rev. Fluid Mech., 11, 207–228, 1979 [22]Lin, S. P. & Reitz, R. D., Drop and spray formation from a liquid jet, Ann. Rev. Fluid Mech., 30, 85–105, 1998 [23]Elmqvist, R., Measuring instrument of the recording type, US patent, 2,566,433 [24]Sweet, R. G., High frequency recording with electrostatically deflected ink jets, Rev. Sci. Instrum., 36, 131-136, 1965 [25]Buehner, W. L., Hill, J. D. & Woods, J. W., Application of ink-jet technology to a word processing output printer, IBM J. Res. Dev., 21, 2-9, 1977 [26]Zoltan, S. I., Pulsed droplet ejecting system, US patent, 3,683,212 [27]Kyser, E. L. & Sears, S. B., Method and apparatus for recording with writing fluids and drop projection means therefor, US patent, 3,946,398 [28]Endo, I., Saito, S., Nakagiri, T. & Ohno, S., Liquid jet recording process and apparatus therefor, UK patent, 2,007,162 [29]Vaught, J. L., Cloutier, F. L., Donald, D. K., Meyer, J. D., Tacklind C. A. & Taub, H. H., Thermal ink jet printer, US patent, 4,490,728 [30]Le, H. P., Progress and trends in ink-jet printing technology, J. Imaging Sci. Technol., 42, 49-62, 1998 [31]Brünahl, J. & Grishin, A.M., Piezoelectric shear mode drop-on demand inkjet actuator, Sens. Actuators A Phys., 101, 371-382, 2002 [32]Ben-Tzvi, P. & Rone, W., Microdroplet generation in gaseous and liquid environment, Microsyst. Technol., 16, 333-356, 2010 [33]Ho, C. W., Chance, D. A., Bajorek, C. & Acosta, R. E., The thin-film module as a high-performance semiconductor package, IBM Journal of Research and Development, 26, 286-296, 1982 [34]Palmer, E. G. & Newton, C. M., 3-D packaging using low temperature cofired ceramics(LTCC), International Journal of Microcircuits and Electronic Packaging, 16, 279-284, 1993 [35]Gongora-Rubio, M. R., Solá-Laguna, L. M., Moffet, P. J. & Santiago-Avilés, J. J., The utilization of low temperature co-fired ceramics(LTCC-ML) technology for meso-scales EMS, a simple thermistor based flow sensor, Sensors and actuators A-Physical, 73, 215-221, 1999 [36]Wu, M. H. & Yetter, R. A., Development and analysis of a LTCC micro stagnation-point flow combustor, Journal of Micromechanics and Microengineering, 18, pp.125016, 2008 [37]Donald Plumlee, J.S., Development of micro-nozzle and ion mobility spectrometer in LTCC, 2004 IEEE Workshop on Microelectronics and Electron Devices, 95-98, 2004 [38]Sobocinski, M., Juuti, J., Jantunen, H. & Golonka, L., Piezoelectric unimorph valve assembled on an LTCC substrate, Sensors and actuators A-Physical, 149, 315-319, 2009 [39]Gongora-Rubio, M. R., Espinoza-Vallejos, P., Sola-Laguna, L. & Santiago-Avilés, J. J., Overview of low temperature co-fired ceramics tape technology for meso-system technology(MsST), Sensors and Actuators A, 89, 222-241, 2001 [40]Jurkow, D., Roguszczak, H. & Golonka, K., Cold chemical lamination of ceramic green tapes, Journal of European Ceramic Society, 29, 703-709, 2009 [41]Ulmke, H., Wriedt, T. & Bauckhage, K., Piezoelectric droplet generator for the calibration of particle-sizing instruments, Chem. Eng. Technol., 24, 265-268, 2001 [42]Cooley, P., Wallance, D. & Antohe, B., Applications of ink-jet printing technology to bioMEMS and microfluidic systems, Proc. SPIE Conf. Microfluid BioMEMS, 4560, 177-188, 2001 [43]Ashgriz, N., Handbook of Atomization and Sprays, Springer, ?, 2011 [44]Brenn, G., On the controlled production of sprays with discrete polydisperse drop size spectra, Chem. Eng. Sci., 55, 5437–5444, 2000 [45]Haenlein, A., Disintegration of a liquid jet, NACA-TM-659, 1931 [46]v. Ohensorge, W., Die Bildung von Tropfen an Düsen und die Auflösung flüssiger Strahlen, Zeitschrift für Angewandte Mathematik und Mechanik, 16, 355-358, 1936 [47]Miesse, C. C., Correlation of experiment data on the disintegration of liquid jet, Ind. Eng. Chem., 47(9), 1690-1701, 1955 [48]Reitz, R. D., Atomization and other breakup regimes of a liquid jet, Ph. D. Thesis, Princeton University, 1978 [49]Kita, J., Dziedzic, A., Golonka, L. J. & Zawada, T., Laser treatment of LTCC for 3D structures and elements fabrication, Microelectronic International, 19(3), 14-18, 2002 [50]Nowak, K. M., Baker, H. J. & Hall, D. R., Cold processing of green state LTCC with a CO2 laser, Applied Physics A, 84, 267-270, 2006 [51]Nowak, K. M., Baker, H. J. & Hall, D. R., A model for “cold laser ablation of green state ceramics materials, Applied Physics A, 91, 341-348, 2008 [52]Nowak, K. M., Baker, H. J. & Hall, D. R., “Cold CO2 laser ablation of green-state LTCC— experimental verification of improved model and comparison of various LTCC materials, Applied Physics A, 103, 1033-1046, 2011 [53]Schneider¸J. M. & Hendricks, C. D., Source of uniform-sized liquid doplets, Review of Scientific Instruments, 35, 1349-1350, 1964
|