跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/03 02:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張育豪
研究生(外文):Yu-Hao Chang
論文名稱:進氣歧管內流場結構對最終噴霧油滴特性之影響評估
論文名稱(外文):Assessment of the Effects on the Characteristics of Oil Spray by the Flow Field Structure inside the Inlet Manifold
指導教授:劉旭光劉旭光引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:110
中文關鍵詞:壁面浸潤粒徑分佈葉片環電子噴嘴.歧管流場結構
外文關鍵詞:wall wettingflow structure inside inlet manifoldelectronic nozzlestator ringparticle size distribution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:438
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究係針對機車引擎進氣歧管內的流場結構對噴油霧化情形進行研究評估。為了改變進氣歧管內的流場結構,於節氣門(蝴蝶閥)下游處裝置不同幾何形狀設計之葉片環,利用FLOWORK模擬其流場在管內以及進入汽缸時的速度分佈及流線情形,其後再以雷射粒徑儀量測無裝置葉片環以及加裝各個葉片環後的粒徑大小分布,並以電子天平量測相同狀況下所收集之油滴浸潤量。實驗中主要工作參數為不同的節氣門開度、葉片環模型以及汽缸進氣閥門桿的作動與否。而實驗結果顯示不論是否改變進氣歧管內的流場結構,節氣門的開度越大,所測得的粒徑越小。而進氣閥門的作動則因為會導致不可預期的大顆液滴,使得平均粒徑值變大。裝置葉片環後的歧管流道雖然所量測到的粒徑皆大於無葉片裝置的歧管流道,但在油滴浸潤量的收集部分卻有著比較良好的結果,歸咎於其流場結構改變後,其流場內具有明顯的旋轉特徵,因而增加了油滴粒子碰撞結合的機會,也降低了附著於歧管管壁上之油膜累積形成液態油滴流入汽缸的機會。綜合模擬及實驗數據的結果可發現,改變進氣歧管內的流場結構確實可對噴嘴噴油之霧化情形以及汽缸與管壁壁面所附著之燃油液滴狀態造成一定程度之影響。
This study carries out the research assessment of the effects on the characteristics of oil spray by the flow structure inside the engine inlet manifold of a motorcycle. Stator ring with different blade design were installed upstream of the manifold in order to change the flow structure. Commercial software FloWork was used to simulate the flow field before and after airflow entering the cylinder. The characteristics of the oil spray were then evaluated using laser particle sizer, together with balance for oil wetting measurement. Major experiment parameters in this research include different throttle openings, stator ring designs and the actions of the inlet valve of the cylinder. The experimental result reveals that no matter how the flow structure changes, the more the throttle opening, the smaller the SMD value. The motion (open-close) of the inlet valve will increase the oil particle size due to the existence of unexpected huge oil droplets. Although the installation of stator rings in general increase the SMD value, however, the oil wetting at the wall was dropped clearly. This outcome may be attributed to the change of the flow structure, which imposes rotating motion to the flow field and provides better chance for the oil droplets to collide and combine, and brings the oil back to the flow field from the oil film on the wall and prevents liquid oil flows into the cylinder too. Based on the comprehensive simulation and experimental result, it is clear that the change of flow structure inside the inlet manifold can indeed influence the characteristics of the oil spray and the oil wetting at the wall.
中文摘要 ………………………………………………………………... I

英文摘要 ………………………………………………………………... II
誌謝 ………………………………………………………………... III
目錄 ………………………………………………………………... IV
圖目錄 ………………………………………………………………... VI
表目錄 ………………………………………………………………... X
符號說明 ………………………………………………………………... XI
[1] Ren, W.M., Sayar, H., 2001, “Influence of Nozzle Geometry on Spray Atomization and Shape for Port Fuel Injector”, SAE 2001-01-0608.

[2] 吳培寬, 1986, “噴嘴霧化之研究”, 國立台灣大學碩士論文。

[3] Almkvist Goran, Karlsson Tomas, Gren Styrbojorn, Andersson Conny, Oskarsson Peter, 2001, “Fuel Injection System for a High Speed One Cylinder S.I. Engine”, SAE paper NO.2001 01 1863/4284.

[4] Lefebvre, A. H., 1989, Atomization and Sprays, Chapter 1-7, Hemisphere Publishing Corporation, New York。

[5] 黃祥熙 ~ 液態特性對空氣輔助噴油嘴性能之實驗研究 國立成功大學1980

[6] Han, J.S., Lu, P.H., Xie, X.B., Lai, M.C., Henein, N.A., 2002, “Investigation of Diesel Spray Primary Break-up and Development for Different Nozzle Geometries”, SAE 2002-01-2775.

[7] Morgan, R., Wray, J., Kennaird, D.A., Crua, C., Heikal, M.R., 2001,“Then Fluency of Injector Parameters on the Formation and Break-up of a Diesel Spray”, SAE 2001-01-0529.
[8] Bergstrand, P., Persson, F., Forsth, M., Denbratt I., 2003, “A Study of the Influence of Nozzle Orifice Geometries on Fuel Evaporation Using Laser-Induced Exciplex Fluorescence“, SAE 2003-01-1836
[9] Tamaki, N. Shimizu, M. Hiroyasu, H., 2001, “Enhancement of the atomization of a liquid jet by cavitation in a nozzle hole,” Atomization and Spray System, Tokyo, 2001, pp. 125-137.
[10] Shayler, P.J., Colechin, M.J.F., Scarisbrick, A., 1996, “Heat Transfer Measurements in the Intake Port of a Spark Ignition Engine”, SAE 960273
[11] Shayler, P.J., Colechin, M.J.F., Scarisbrick, A., 1996, “Fuel Film Evaporationand Heat Transfer in the Intake Port of a SI Engine”, SAE 961120.
[12] Hanriot, S.M., de Medeiros, M.A.F., Sodre, J.R., Valle, R.M., 2000,“An Experimental and Numerical Study from Pulsating Flow in Intake Manifold”, SAE 2000-01-3162.
[13] 裴毅強, 蘇萬華, 林鐵堅, 2003, “一種基於稀擴散燃燒概念的bump燃燒室及其降低柴油機有害排放機理的研究”, 自然科學進展, 第13卷, 第五期。

[14] Li, J. ,Collings, N., 1999, “A Semi-Empirical Model of Fuel Transport in Intake Manifolds of SI Engines and Its Application in Transient Conditions”, SAE 1999-01-1314.
[15] Hardalupas, Y., Taylor, A.M.K.P., and Wilkins, J.H., 1999, “Experimental Investigation of Sub-millimetre Droplet Impingement onto Spherical Surfaces,” International Journal of Heat and Fluid Flow, Vol.20, pp. 477-485.
[16] Ashgrize, N. and Grivi, P., 1987, “Coalescence Collision of Fuel Droplets”, AIAA-87- 0135.

[17] Park, J., Xie, X., Kim, H., and Lai, M.C., 2001, “Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray,” SAE 2001-01-2023.
[18] 胡永祥, 1996, “引擎進氣道噴霧之實驗研究”, 國立清華大學碩士論文。
[19] Estes, K.A.,and Mudawar, I., “Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces,” Int. J. Heat and Mass Transfer, 38 (1995) 2985-2996
[20] Humberto , C., Kubitzek, A.M.,and Frank , O., “Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls,” Int. J. Heat and Fluid Flow, 20 (1999) 470-476.
[21] Burger, M., Schmehl, R., Gorse, P., Dullenkopf, K., Schafer, O., Koch, R., and Wittig, S., 2002, “Predictions of Transient Fuel Spray Phenomena in the Intake Port of a SI Engine,” SAE 2002-01-2695.
[22] Chengxin Bai and A. D. Gosman, 1995, “Development of Methodology for Spray Impingement Simulation” SAE 950283
[23] Manshik Kim, Hoon Cho,Youngman Cho and Kyoungdoug Min, 2003, “Computation and Optical Investigation of Liquid Fuel Film on the Cylinder Wall of an SI Engine” SAE 2003-01-1113
[24] 李雲清, 呂匡, 2001, “噴霧碰壁兩相流場的數值研究” , 北京航空航太大學汽車工程系。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top