[1] Ren, W.M., Sayar, H., 2001, “Influence of Nozzle Geometry on Spray Atomization and Shape for Port Fuel Injector”, SAE 2001-01-0608.
[2] 吳培寬, 1986, “噴嘴霧化之研究”, 國立台灣大學碩士論文。[3] Almkvist Goran, Karlsson Tomas, Gren Styrbojorn, Andersson Conny, Oskarsson Peter, 2001, “Fuel Injection System for a High Speed One Cylinder S.I. Engine”, SAE paper NO.2001 01 1863/4284.
[4] Lefebvre, A. H., 1989, Atomization and Sprays, Chapter 1-7, Hemisphere Publishing Corporation, New York。
[5] 黃祥熙 ~ 液態特性對空氣輔助噴油嘴性能之實驗研究 國立成功大學1980
[6] Han, J.S., Lu, P.H., Xie, X.B., Lai, M.C., Henein, N.A., 2002, “Investigation of Diesel Spray Primary Break-up and Development for Different Nozzle Geometries”, SAE 2002-01-2775.
[7] Morgan, R., Wray, J., Kennaird, D.A., Crua, C., Heikal, M.R., 2001,“Then Fluency of Injector Parameters on the Formation and Break-up of a Diesel Spray”, SAE 2001-01-0529.
[8] Bergstrand, P., Persson, F., Forsth, M., Denbratt I., 2003, “A Study of the Influence of Nozzle Orifice Geometries on Fuel Evaporation Using Laser-Induced Exciplex Fluorescence“, SAE 2003-01-1836
[9] Tamaki, N. Shimizu, M. Hiroyasu, H., 2001, “Enhancement of the atomization of a liquid jet by cavitation in a nozzle hole,” Atomization and Spray System, Tokyo, 2001, pp. 125-137.
[10] Shayler, P.J., Colechin, M.J.F., Scarisbrick, A., 1996, “Heat Transfer Measurements in the Intake Port of a Spark Ignition Engine”, SAE 960273
[11] Shayler, P.J., Colechin, M.J.F., Scarisbrick, A., 1996, “Fuel Film Evaporationand Heat Transfer in the Intake Port of a SI Engine”, SAE 961120.
[12] Hanriot, S.M., de Medeiros, M.A.F., Sodre, J.R., Valle, R.M., 2000,“An Experimental and Numerical Study from Pulsating Flow in Intake Manifold”, SAE 2000-01-3162.
[13] 裴毅強, 蘇萬華, 林鐵堅, 2003, “一種基於稀擴散燃燒概念的bump燃燒室及其降低柴油機有害排放機理的研究”, 自然科學進展, 第13卷, 第五期。
[14] Li, J. ,Collings, N., 1999, “A Semi-Empirical Model of Fuel Transport in Intake Manifolds of SI Engines and Its Application in Transient Conditions”, SAE 1999-01-1314.
[15] Hardalupas, Y., Taylor, A.M.K.P., and Wilkins, J.H., 1999, “Experimental Investigation of Sub-millimetre Droplet Impingement onto Spherical Surfaces,” International Journal of Heat and Fluid Flow, Vol.20, pp. 477-485.
[16] Ashgrize, N. and Grivi, P., 1987, “Coalescence Collision of Fuel Droplets”, AIAA-87- 0135.
[17] Park, J., Xie, X., Kim, H., and Lai, M.C., 2001, “Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray,” SAE 2001-01-2023.
[18] 胡永祥, 1996, “引擎進氣道噴霧之實驗研究”, 國立清華大學碩士論文。[19] Estes, K.A.,and Mudawar, I., “Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces,” Int. J. Heat and Mass Transfer, 38 (1995) 2985-2996
[20] Humberto , C., Kubitzek, A.M.,and Frank , O., “Dynamic processes occurring during the spreading of thin liquid films produced by drop impact on hot walls,” Int. J. Heat and Fluid Flow, 20 (1999) 470-476.
[21] Burger, M., Schmehl, R., Gorse, P., Dullenkopf, K., Schafer, O., Koch, R., and Wittig, S., 2002, “Predictions of Transient Fuel Spray Phenomena in the Intake Port of a SI Engine,” SAE 2002-01-2695.
[22] Chengxin Bai and A. D. Gosman, 1995, “Development of Methodology for Spray Impingement Simulation” SAE 950283
[23] Manshik Kim, Hoon Cho,Youngman Cho and Kyoungdoug Min, 2003, “Computation and Optical Investigation of Liquid Fuel Film on the Cylinder Wall of an SI Engine” SAE 2003-01-1113
[24] 李雲清, 呂匡, 2001, “噴霧碰壁兩相流場的數值研究” , 北京航空航太大學汽車工程系。