|
[1] Agresti, A. 2002. Categorical Data Analysis. Second edition. Wiley, New Jersey. [2] Chao (2003). Risk assessment in longitudinal familial studies. 九十二年中國統計學社年會暨學術研討會, 87. [3] Chang (2004). A multivariate regression model for analyzing longitudinal clus- tered data of multiple binary responses. 東華大學碩士論文. [4] Cleeman, J. I., Grundy, S. M., Becker, D., et al. (2001). Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatement Panel III). Journal of the American Medical Association, 285, 2486-2497. [5] Heagerty, P. J. and Zeger, S. L. (1996). Marginal regression models for clus- tered ordinal measurements. Journal of the American Statistical Association, 91, 1024-1036. [6] Heagerty, P. J. and Zeger, S. L. (1998). Lorelogram: A regression approach to exploring dependence in longitudinal categorical responses. Journal of the American Statistical Association, 93, 150-162. [7] Heagerty, P. J., Liang, K.-Y., and Zeger, S. L. (2002). Analysis of Longitudianl Data. Second edition. Oxford, New York. [8] Laird, N., Lange, N., and Stram, D. (1987). Maximum likelihood computa- tions with repeated measures: Application of the EM algorithm. Journal of the American Statistical Association, 82, 97-105 [9] Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using general- ized linear models. Biometrika, 73, 13-22. [10] Liang, K.-Y., Zeger, S. L., and Qaqish, B. (1992). Multivariate regression anal- yses for categorical data (with Discussion). Journal of the Royal Statistical Society, B, 54, 3-40. [11] Lipsitz, S., Laird, N., and Harrington, D. (1991) Generalized estimating equa- tions for correlated binary data: using odds ratios as a measure of associaton. Biometrika, 78, 153-160. [12] Lipsitz, S. R., Kim, K. and Zhao, L. (1994). Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine, 13, 1149- 1163. [13] McCullagh,P. and Nelder, J. A. (1989) Generalized Linear Models. Chapman and Hall, New York. [14] Pan, W. H. (2002). Metabolic syndrome - An important but complex disease entity for Asians. Acta Cardiol Sin, 18, 24-26. [15] Qu, Y., Williams, G. W., Beck, G. J., and Medendorp, S. V. (1992). Latent variable models for clustered dichotomous data with multiple subclusters. Biometrics , 48, 1095-1102. [16] Qu, Y., Piedmonte, M. R., Medendorp, S. V. (1995). Latent variable models for clustered ordinal data. Biometrics, 51, 268-275. [17] Stiratelli, R., Laird, N., andWare, J.H. (1984). Random-effects models for serial observations with binary response. Biometrics, 40, 961-971. [18] Tallis, G. M. (1962) The maximum likelihood estimation of correlation from contingency tables. Biometrics, 48, 1095-1102. [19] Williamson, J. M., Kim, K., and Lipsitz, S. (1995). Analyzing bivariate ordinal data using a global odds ratio. Journal of the American Statistical Association, 90, 1432-1437. [20] Zeger, S. L. and Karim, M. R. (1991). Generalized linear models with ran- dom effects; A Gibbs sampling approach. Journal of the American Statistical Association, 86, 79-86. [21] 潘文涵。竹東及朴子地區心臟血管疾病長期追蹤研究計劃。 請瀏覽中央研究院生物醫學科學研究所潘老師網頁 http://www.ibms.sinica.edu.tw/~pan/.
|