|
[1] Ahn, S.M., Kim, T.H., Lee, S., et al. The first Korean genome sequence and analysis: Full genome sequencing for a socio-ethnic group. Genome Research, 19:1622–1629, 2009. [2] Alkan, C., Sajjadian, S. and Eichler, E.E. Limitations of next-generation genome sequence assembly. Nature Methods, 1:61–65, 2011. [3] Bansal, V., and Bafna, V. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. Bioinformatics, 24:i153–i159, 2008. [4] Bentley, D. Whole-genome re-sequencing. Current Opinion in Genetics & Develop- ment, 16:545–552, 2006. [5] Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D., and Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 27:578–579, 2011. [6] Chaisson, M.J., Brinza, D. and Pevzner, P.A. De novo fragment assembly with short mate-paired reads: Does the read length matter? Genome Research, 19:336–346, 2008. [7] Chakravarti, A. It’s raining SNPs, hallelujah? Nature Genetics, 19:216–217, 1998. [8] Chang, C.J., Huang, Y.T. and Chao, K.M. A greedier approach for finding tag SNPs. Bioinformatics, 22:685–691, 2006. [9] Chen, K., Wallis, J.W., McLellan, M.D., and et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nature Methods, 6:677–681, 2009. [10] Chen, Y., Xin, L., and Li, J. A novel approach for haplotype-based association analysis using family data. BMC Bioinformatics, 11, 2010. [11] Cilibrasi, R., Iersel, L.V., Kelk, S., and Tromp, J. On the Complexity of Several Haplotyping Problems. In Algorithms in Bioinformatics, pages 128–139, 2005. [12] Frazer, K.A., Ballinger, D.G., Cox, D.R., et al. A second generation human haplotype map of over 3.1 million SNPs. Nature, 449:851–861, 2007. [13] Genome 10K Community of Scientists. Genome 10K: a proposal to obtain wholegenome sequence for 10,000 vertebrate species. Journal of Heredity, 100:659–674, 2009. [14] Gilbert, W. DNA sequencing and gene structure. Science, 214:1305–1312, 1981. [15] Harismendy, O., Ng, P.C., Strausberg, R.L., Wang, X., Stockwell, T.B., Beeson,K.Y., Schork, N.J., Murray, S.S., Topol, E.J., Levy, S., and Frazer, K.A. Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biology, 10, 2009. [16] He, D., Choi, A., Pipatsrisawat, K., Darwiche, A., and Eskin, E. Optimal algorithms for haplotype assembly from whole-genome sequence data. Bioinformatics, 26:183–190, 2010. [17] Hoehe, M.R., Köpke, K., Wendel, B., et al. Sequence variability and candidate gene analysis in complex disease: association of micro opioid receptor gene variation with substance dependence. Human Molecular Genetics, 9:2895–2908, 2000. [18] Hormozdiari, F., Alkan, C., Eichler, E.E., and Sahinalp, S.C. Combinatorial Algorithms for Structural Variation Detection in High-Throughput Sequenced Genomes. Genome Research, 19:1270–1278, 2009. [19] Hormozdiari, F., Hajirasouliha, I., Dao, P., Hach, F., Yörükoglu, D., Alkan, C., Eichler, E.E., and Sahinalp, S.C. Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics, 26:350–357, 2010. [20] Huang, Y.T. and Chao, C.M. A new framework for the selection of tag SNPs by multimarker haplotypes. Journal of Biomedical Informatics, 41:953–961, 2008. [21] Huang, Y.T., Zhang, K., Chen, T. and Chao, K.M. Selecting additional tag SNPs for tolerating missing data in genotyping. BMC Bioinformatics, 6, 2005. [22] Hussin, J., Nadeau, P., Lefebvre, J.F, and Labuda, D. Haplotype allelic classes for detecting ongoing positive selection. BMC Bioinformatics, 11, 2010. [23] International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature, 431:931–945, 2004. [24] Lancia, G., Bafna, V., Istrail, S., Lippert, R. and Schwartz, R. SNPs Problems, Complexity, and Algorithms. In European Symposium on Algorithms, pages 182–193, 2001. [25] Lee, S., Hormozdiari, F., Alkan, C. and Brudno, M. MoDIL: detecting small indels from clone-end sequencing with mixtures of distributions. Nature Methods, 6:473–474, 2009. [26] Levy, S., Sutton, G., Ng, P.C. et al. The Diploid Genome Sequence of an Individual Human. Plos Biology, 5, 2007. [27] Li, H. and Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754–1760, 2009. [28] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.R. and Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25:2078–2079, 2009. [29] Li, R., Fan, W., Tian, G., et al. The sequence and de novo assembly of the giant panda genome. Nature, 463:311–317, 2009. [30] Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kristiansen, K., Yang, H., and Wang, J. De novo assembly of human genomes with massively parallel short read sequencing. Genome Research, 20:265–272, 2010. [31] Lippert, R., Schwartz, R., Lancia, G., and Istrail, S. Algorithmic strategies for the SNPs haplotype assembly problem. Briengs in Bioinformatics, 3:23–31, 2002. [32] Liu, Y., Shi, Y., Tang, J., et al. SNPs and haplotypes in the S100B gene reveal association with schizophrenia. Biochemical and Biophysical Research Communications, 328:335–341, 2005. [33] Mardis, E.R. Next-Generation DNA Sequencing Methods. Annual Review of Ge- nomics and Human Genetics, 9:387–402, 2008. [34] Maxam, A.M. and Gilbert, W. A New Method for Sequencing DNA. Proceedings of The National Academy of Sciences, 74:560–564, 1977. [35] McKernan, K.J., Peckham, H.E., Costa, G.L., et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Research, 19:1527–1541, 2009. [36] Nakashima, K., Hirota, T., Obara, K., et al. A functional polymorphism in MMP-9 is associated with childhood atopic asthma. Biochemical and Biophysical Research Communications, 344:300–307, 2006. [37] Perry, G.H, Amir, B.D., Tsalenko, A., et al. The Fine-Scale and Complex Architecture of Human Copy-Number Variation. American Journal of Human Genetics, 82:685–695, 2008. [38] Pevzner, P.A., Tang, h. and Waterman, M.S. An Eulerian path approach to DNA fragment assembly. Proceedings of The National Academy of Sciences, 98:9748–9753, 2001. [39] Redon, R., Ishikawa, S., Fitch, K.R., et al. Global variation in copy number in the human genome. Nature, 444:444–454, 2006. [40] Sebat, J., Lakshmi, B., and Troge, J. Large-Scale Copy Number Polymorphism in the Human Genome. Science, 305:525–528, 2004. [41] Sharp, A.J., Carson, A.R. and Scherer, S.W. Structural variation in the human genome. Annual Review of Genomics and Human Genetics, 7:85–97, 2006. [42] Shulaev, V., Sargent D.J., Crowhurst R.N., et al. The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 43:109–116, 2010. [43] Simpson, J.T., Wong, K., Jackman, S.D., et al. ABySS: A parallel assembler for short read sequence data. Genome Research, 19:1117–1123, 2009. [44] Sindi, S., Helman, E., Bashir, A., and Raphael, B.J. A geometric approach for classification and comparison of structural variants. Bioinformatics, 25, 2009. [45] Sommer, D.D., Delcher, A.L., Salzberg, S.L., and Pop, M. Minimus: a fast, lightweight genome assembler. BMC Bioinformatics, 8, 2007. [46] Stefansson, H., Helgason, A., Thorleifsson, G., et al. A common inversion under selection in Europeans. Nature Genetics, 37:129–137, 2005. [47] Stephens, J.C, Schneider, J.A., Tanguay, D.A., et al. Haplotype Variation and Linkage Disequilibrium in 313 Human Genes. Science, 293:489–493, 2001. [48] Terwilliger, J.D., andWeiss, K.M. Linkage disequilibrium mapping of complex disease: fantasy or reality? Current Opinion in Biotechnology, 9:578–594, 1998. [49] Voight, B.F., Kudaravalli, S., Wen, X. and Pritchard, J.K. A Map of Recent Positive Selection in the Human Genome. Plos Biology, 4, 2006. [50] Wang, J., Wang, W., Li, R., et al. The diploid genome sequence of an Asian individual. Nature, 456:60–65, 2008. [51] Wang, R.S., Wu, L.Y., Li, Z.P., and Zhang, X.S. Haplotype reconstruction from SNP fragments by minimum error correction. Bioinformatics, 21:2456–2462, 2005. [52] Wendl, M.C. and Wilson, R.K. Statistical aspects of discerning indel-type structural variation via DNA sequence alignment. BMC Genomics, 10, 2009. [53] Wheeler, D.A., Srinivasan, M., Egholm, M., et al. The complete genome of an individual by massively parallel DNA sequencing. Nature, 452:872–876, 2008. [54] Zerbino, D.R. and Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18:821–829, 2008.
|