|
[1] S. Ostrach , Natural convection in Enclosures, J. Heat Transfer,50th Anniversary Issue, 110: 1175-1189, 1988. [2] K. T. Yang, Transitions and bifurcations in laminar buoyant flows in confined enclosures, J. Heat Transfer, 110: 1191-1204, 1988. [3] C. Xia, J.Y. Murthy, Buoyancy-Driven Flow Transtions in Deep Cavities Heated From Below, J. Heat Transfer 124: 650-659, 2002. [4] D. W. Crunkleton, R. N. Narayanan, T. J. Anderson, Numerical simulation of periodic flow oscillations in low Prandtl number fluids, Int. J. Heat and Mass trans. 49: 427-438, 2006. [5] G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids, 3: 249-264, 1983. [6] D. M. Kim, R. Viskanta, Study of the effect of wall conductance on natural convection in differentially oriented square cavities, J. Fluid Mech. 144: 153-176, 1984. [7] O. Aydin, A. Ünal, T. Ayhan, Natural convection in rectangular enclosures heated from one side and cooled from the ceiling, Int. J. Heat Mass Trans. 42: 2345-2355,1999. [8] M. M. Ganzarolli, L. F. Milanez, Natural convection in rectangular enclosures heated form one side and cooled from the sides, Int. J. Heat Mass Tran. 38(6): 1063-1073, 1995. [9] A. Dalal, M. K. Das, Natural convection in a rectangular cavity heated form below and uniformly cooled form the top and both sides, Num. Heat Trans. Part A.49: 301-322, 2006. [10] M. A. R. Sharif, T. R. Mohammad, Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling form the side wall, Int. Thermal. Sci. 41: 865-878, 2005. [11] M. Corcione, Effect of thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated form below and cooled form above. Int. Thermal. Sci. 42: 199-208, 2003. [12] X. He, S. Chen, G. D. Doolen, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comp. Phys. 146: 282-300, 1998. [13] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30: 329-364, 1998. [14] D. Yu, R. Mei, L. S. Luo, W. Shyy, Viscous flow computations with the method of lattice Boltzmann equation, Progress in Aerospace Sciences 39: 329-367, 2003. [15] D. Raabe, Overview of the lattice Boltzmann method for nano- and microscale fluid dynamics in materials science and engineering, Model. Simul. Mater. Sci. Eng. 12: R13-46, 2004. [16] S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond, ClarendonPress, Oxford, 2001. [17] X. Shan, Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method, Phys. Rev. E 55 (3): 2780-2788, 1997. [18] Y. Zhou, R. Zhang, I. Staroselsky, H. Chen, Numerical simulation of laminar and turbulent buoyancy-driven flows using a lattice Boltzmann based algorithm. Int. J. Heat Mass Trans. 47: 4869-4879, 2004. [19] H. N. Dixit, V. Babu, Simulations of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Int. J. Heat Mass Trans. 49: 727-739, 2006. [20] Y. Peng, C Shu, Y. T. Chew, Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E, 68: 1-8, 2003. [21] G. Barrios, R. Rechtman, J. Rojas, R. Tovar, The Lattice Boltzmann equation for natural convection in a two-dimensional cavit with a partially heated wall, J. Fluid Mech. 522: 91-100, 2005. [22] Y. H. Qian, D d’Humieres, P. Lallemand, Lattice BGK models for the Navier-Stokes equation, Europhys. Lett. 17(6): 479-484, 1992. [23] Y. H. Qian, S. A. Orszag, Lattice BGK models for the Navier-Stokes equation:non-linear deviation in compressible regimes, Europhys.Lett. 21: 255-259, 1993. [24] S. P. Dawson, S. Chen, G. D. Doolen, Lattice Boltzmann computations for reaction-diffusion equations, J. Chem. Phys 98: 1514-1523, 1993. [25] C. Cercignani, Mathematical Methods in kinetic theory, Plenum, New York, 1969. [26] G. Wannier, Statistical physics, Diver, New York, 1966. [27] C. Shu, X. D. Niu, Y. T. Chew, A Lattice Boltzmann Kinetic model for microflow and heat transfer, J. Stat. Phys. 121: 239-255, 2005. [28] R. M. Clever and F. H. Busse, Transition to time-Dependent Convection, J. Fluid Mech., 65: 625-645, 1974. [29] Y. Peng, C. Shu, Y. T. Chew, A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity, J. Comp. Phys. 193: 260-274, 2003. [30] E. J. Braga, M. J. S. de Lemos, Heat transfer in encloses having a fixed amount of solid material simulated with heterogeneous and homogeneous models, Int. J. Heat Mass Transfer. 48: 537-550, 2005. [31] J. C. Kalita, D. C. Dalal, A. K. Dass, Fully compact higher-order computation of steady-state natural convection in a square cavity, Phys Rev. E 64: 006703, 2001. [32] D. W. Crunkleton, R. Narayanan, T. J. Anderson, Numerical simulations of periodic flow oscillations in low Prandtl number fluids, Int. J. Heat Mass Trans. 49: 427-438, 2006.
|