跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:杜哲豪
研究生(外文):TU,CHE-HAO
論文名稱:利用循序批分式接觸材反應槽(SBBR)進行同時硝化脫硝(SND)
論文名稱(外文):Applying Sequencing Batch Biofilm Reactor (SBBR) to conduct Simultaneous Nitrification and Denitrification (SND)
指導教授:張鎮南張鎮南引用關係
指導教授(外文):CHANG,CHENG-NAN
口試委員:黃啟裕盧至人余瑞芳
口試委員(外文):HUANG, CHI-YULu, Chih-JenYU,RUEY-FAGN
口試日期:2017-01-11
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:98
中文關鍵詞:廢棄污泥(WAS)同步硝化脫硝(SND)利用循序批分式接觸材反應槽(SBBR)厭氧氨氧化(Anammox)即時控制(Real time control)碳氮比(C/N)
外文關鍵詞:Wasted Activated Sludge (WAS)sequencing batch biofilm reactor (SBBR)simultaneous nitrification and denitrification (SND)anaerobic ammonium oxidation (Anammox)real-time controlC/N Ratio
相關次數:
  • 被引用被引用:2
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用廢棄泥再製成多孔隙生物載體,將其應用於兩種不同填充率(20%、40%)之SBBR生物反應槽中,並將Anammox植入SND系統中,達到減少碳源的目的,在SBBR的操作初期(1-125天)為使用時間控制(缺氧攪拌、曝氣),此方式有著較大的誤差,無法有效控制硝化反應速率、脫硝反應速率及厭氧氨氧化反應速率,在操作的第126天之後,以時間與即時監測方式(ORP、DO、pH),找到各個反應速率的控制方法,使各個反應速率達到較好的平衡。本研究的多孔隙生物載體的混和比例為5:3:2,因載體內部製程中空型態,導致抗壓強度的偏低(15.5 ±0.8 Kgf/cm2),但提高比表面積(3.0±0.2 m2/g)、吸水率(55.1±2.1%)及視密度(2.3±0.2 g/cm3)。經實驗證明,在低碳源條件(C/N=1.9)下操作,TN的去除率可達到86.2%,另外在SBBR-20%及SBBR-40%的操作上,配合即時監測設備,有效的抑制兩SBBR系統中NO3--N產生(分別減少6.3%和48.4%的), TN的去除率分別提高了27.4%和19.1%效能。
Wasted activated sludge was used to prepare bio-carrier for applying to SBBR bioreactor with different carrier-packing (20% and 40%) to conduct simultaneous nitrification and denitrification (SND) for nitrogen removal in this study. Sludge from Sinfong sanitary landfill leachate treatment plant which was capable of conducting anammox reaction were seeded into the SND system to help decrease carbon source used. The rate of nitrification, denitrification, anaerobic ammonium oxidation have effective due to real-time data (ORP, DO and pH) are further to investigate the optimal operational condition. The Sludge:Laterite:iron oxide of pellet carrier was 5:3:2. The compressive strength of sintered pellet was 15±0.8 Kgf/cm2 and the pellet center was hollow. The water absorption was 55.1±2.1%, bulk density was 2.3±0.2 g/cm3 and specific external surface area was 3.0±0.2 m2/g, The optimal total nitrogen (TN) removal was found to be 86.7% in the SBBR system with low C/N ratio (1.9) in this study. Moreover, NO3--N removal could be reduced 6.3% and 48.4% in SBBR-20% and SBBR-60% system compared to those of normal control, and the removal of TN were increased to 27.4% and 19.1%, respectively due to precisely real-time controlling oxidation-reduction potential (ORP), pH and DO.
第一章 前言 1
1.1研究源起 1
1.2研究目的與內容 2
第二章 文獻回顧 3
2.1廢棄污泥(Wasted Activated Sludge,WAS)回收再利用 3
2.1.1國內廢棄污泥(WAS)現況 3
2.1.2污泥特性 4
2.1.3廢棄污泥回收再利用技術 4
2.2廢棄污泥燒結原理及機制 5
2.2.1污泥燒結原理 5
2.2.1影響載體孔隙率之機制 8
2.3廢棄污泥特性之相關研究 9
2.3.1三成份分析 9
2.3.2粒徑分析 10
2.3.2 TCLP毒性特性溶出試驗 11
2.4生物除氮原理 13
2.4.1氮的循環(Nitrogen cycle) 13
2.4.2生物硝化作用(Nitrification) 14
2.4.3生物脫硝作用(Denitrification) 15
2.4.4同步硝化脫硝作用 16
2.4.5硝酸鹽的抑制 18
2.5生物脫氮除磷技術Biological nitrogen removal (BNR) 20
2.5.1 A/O (Anoxic-Oxic)、A2O (Anaerobic-Anoxic-Oxic)程序 20
2.5.3循序批分式接觸材反應槽(Sequencing batch reactor, SBR) 24
2.6 厭氧氨氧化(Anaerobic Ammonium Oxidation, Anammox) 26
2.6.1 Anammox微生物操作條件及馴養 26
2.6.2 Anammox代謝機制 27
2.6.3 Anammox相關應用 28
2.7 Nernst equation 30
2.8 分子生物檢測技術 31
第三章 實驗設計及方法 33
3.1實驗設備與方法 33
3.1.1 SBBR模型及設備 33
3.1.2 操作控制條件及參數 35
3.2自製多孔隙生物載體 43
3.2.1多孔隙生物載體製作方法 43
3.3.2多孔隙生物載體分析方法 45
3.3.3吸水率(Water absorption) 45
3.3.4抗壓強度(Compressive strength) 45
3.3.5視密度測量方法(Bulk density) 46
3.3.6掃描電子顯微鏡(Scanning Electron Microscope, SEM) 46
3.3.7 比表面積(B.E.T)分析 47
3.4 分子生物檢測 47
3.4.1 DNA萃取 47
3.4.2 序列分析 47
第四章 結果與討論 48
4.1生物載體特性 48
4.1.1生物載體之組成和表面型態觀察 50
4.2 以再製之生物載體於SBBR系統之應用 54
4.2.1 SBBR每日監測數值 54
4.2.2 SBBR反應槽污泥濃度變化 61
4.2.3外加碳源對SBBR系統生物除氮影響 62
4.3 SBBR連續批次實驗 65
4.3.1 SBBR系統中COD變化 65
4.3.2 SBBR系統中DO變化 65
4.3.3 SBBR系統中的各種作用之反應特性 66
4.3.4 羥胺(hydroxylamine, NH2OH)檢測 71
4.3.5 SBBR系統中的即時控制 72
4.3.6 SBBR系統中的即時控制的應用 74
4.3.7 SBBR系統中的即時控制的成效 77
4.4Nernst equation的應用與模式的建立 80
4.4.1Nernst equation模式的建立 80
4.4.2Nernst equation模式的應用 81
第五章 結論和建議 87
5.1結論 87
5.2建議 89
參考文獻 90


Bernet, N., Dangcong, P., Delgenès, J.-P., Moletta, R.(2001). Nitrification at low oxygen concentration in biofilm reactor. Journal of environmental engineering 127, cc.266-271.
Bhatty, J.I., Redit, K.J.(1989). Moderate strength concrete from lightweight sludge ash aggregates. Cement Composites and Lightweight Concrete 11, cc.179-187.
Boopathy, R., Bonvillain, C., Fontenot, Q., Kilgen, M.(2007). Biological treatment of low-salinity shrimp aquaculture wastewater using sequencing batch reactor. International Biodeterioration & Biodegradation 59, cc.16-19.
Chang, C.N., Cheng, H.B., Chao, A.C.(2004). Applying the nernst equation to simulate redox potential variations for biological nitrification and denitrification processes. Environ Sci Technol 38, cc.1807-1812.
Cheesemnan, C.R., Sollars, C., McEntee, S.(2003). Properties, microstructure and leaching of sintered sewage sludge ash. Resour Conserv Recy 40, cc.13-25.
Chen, C.H., 2005. Recovery of Industrial Waste Activated Sludge by Baking Technology, Department of Environmental Science and Engineering. Tunghai University, Taichung, ROC.
Chen, C.C., 2010. Application of reused wasted activated sludge (WAS) pellets in sequencing batch biofilm reactor (SBBR) for nitrogen removal and analysis of microbial biofilm, Department of Environmental Science and Engineering. Tunghai University, Taichung, ROC.
Chen, H., Liu, S., Yang, F., Xue, Y., Wang, T.(2009). The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource technology 100, cc.1548-1554.
Chen, H.H., 2008. Research on Performance of Wastewater Purification Unit and Recycling of Wastewater and sludge Dewatering of In-Site in Feng Shan Wate Treatment Plant, Instutute of Environmental Engineering. National Sun Yat-sen University, Kaohsiung, ROC.
Chiu, Y.C., Lee, L.L., Chang, C.N., Chao, A.C.(2007). Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. Int Biodeter Biodegr 59, cc.1-7.
Cui, R., Jahng, D.(2004). Nitrogen control in AO process with recirculation of solubilized excess sludge. Water research 38, cc.1159-1172.
Cusido, J.A., Soriano, C.(2011). Valorization of pellets from municipal WWTP sludge in lightweight clay ceramics. Waste Manage 31, cc.1372-1380.
Das, D., Badri, P.K., Kumar, N., Bhattacharya, P.(2002). Simulation and modeling of continuous H-2 production process by Enterobacter cloacae IIT-BT 08 using different bioreactor configuration. Enzyme Microb Tech 31, cc.867-875.
Daverey, A., Su, S.H., Huang, Y.T., Lin, J.G.(2012). Nitrogen removal from opto-electronic wastewater using the simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) process in sequencing batch reactor. Bioresource technology 113, cc.225-231.
De Boer, W., Kowalchuk, G.(2001). Nitrification in acid soils: micro-organisms and mechanisms. Soil Biology and Biochemistry 33, cc.853-866.
Ding, D., Feng, C., Jin, Y., Hao, C., Zhao, Y., Suemura, T.(2011a). Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination 276, cc.260-265.
Ding, D.H., Feng, C.P., Jin, Y.X., Hao, C.B., Zhao, Y.X., Suemura, T.(2011b). Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination 276, cc.260-265.
Donatello, S., Cheeseman, C.R.(2013). Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Manage 33, cc.2328-2340.
Dosta, J., Fernandez, I., Vazquez-Padin, J., Mosquera-Corral, A., Campos, J., Mata-Alvarez, J., Mendez, R.(2008). Short-and long-term effects of temperature on the Anammox process. Journal of hazardous materials 154, cc.688-693.
EPA, U.(1993). Process design manual of nitrogen control. EP A.[Links].
Fang, P., Tang, Z.J., Huang, J.H., Cen, C.P., Tang, Z.X., Chen, X.B.(2015). Using sewage sludge as a denitration agent and secondary fuel in a cement plant: A case study. Jouranl of Fuel Processing Technology 137, cc.1-7.
Gao, F., Zhang, H., Yang, F., Qiang, H., Li, H., Zhang, R.(2013). Study of an innovative anaerobic (A)/oxic (O)/anaerobic (A) bioreactor based on denitrification–anammox technology treating low C/N municipal sewage. Chemical Engineering Journal 232, cc.65-73.
Ghehi, T.J., Mortezaeifar, S., Gholami, M., Kalantary, R.R., Mahvi, A.H.(2014). Performance evaluation of enhanced SBR in simultaneous removal of nitrogen and phosphorous. J Environ Health Sci 12.
Gomes, M.D., Santos, D., Nunes, L.C., de Carvalho, G.G.A., Leme, F.D., Krug, F.J.(2011). Evaluation of grinding methods for pellets preparation aiming at the analysis of plant materials by laser induced breakdown spectrometry. Talanta 85, cc.1744-1750.
Guo, J., Peng, Y., Wang, S., Zheng, Y., Huang, H., Wang, Z.(2009a). Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresource technology 100, cc.2796-2802.
Guo, J., Peng, Y.Z., Wang, S.Y., Zheng, Y.A., Huang, H.J., Wang, Z.W.(2009b). Long-term effect of dissolved oxygen on partial nitrification performance and microbial community structure. Bioresource Technol 100, cc.2796-2802.
Hagopian, D.S., Riley, J.G.(1998). A closer look at the bacteriology of nitrification. Aquacultural engineering 18, cc.223-244.
Hai, R.T., He, Y.Q., Wang, X.H., Li, Y.(2015). Simultaneous removal of nitrogen and phosphorus from swine wastewater in a sequencing batch biofilm reactor. Chinese J Chem Eng 23, cc.303-308.
Hanaki, K., Wantawin, C., Ohgaki, S.(1990). Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. Water research 24, cc.297-302.
Henze, M., Van Loosdrecht, M.C.M., Ekama, G.A., Brdjanovic, D., 2008. Biological Wastewater Treatment: Principles, Modelling and Design. IWA Publishing, London, UK.
Her, J.-J., Huang, J.-S.(1995). Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresource technology 54, cc.45-51.
Huang, H.H., 2010. Recycled the wasted sludge to rebuild the nutrient biofilm carrier in simultaneous nitrification and denitrification (SND) system by design of experiment (DOE), Department of Environmental Science and Engineering. Tunghai University, Taichung, ROC.
Huang, X.F., Li, W.G., Zhang, D.Y., Qin, W.(2013). Ammonium removal by a novel oligotrophic Acinetobacter sp Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature. Bioresource Technol 146, cc.44-50.
Jetten, M.S., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G., Strous, M.(2001). Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Current opinion in biotechnology 12, cc.283-288.
Jin, R.C., Yang, G.F., Yu, J.J., Zheng, P.(2012a). The inhibition of the Anammox process: A review. Chem Eng J 197, cc.67-79.
Jin, Y.X., Ding, D.H., Feng, C.P., Tong, S., Suemura, T., Zhang, F.(2012b). Performance of sequencing batch biofilm reactors with different control systems in treating synthetic municipal wastewater. Bioresource Technol 104, cc.12-18.
Khin, T., Annachhatre, A.P.(2004). Novel microbial nitrogen removal processes. Biotechnology advances 22, cc.519-532.
Kim, C.G., Lee, H.S., Yoon, T.(2003). Resource recovery of sludge as a micro-media in an activated sludge process. Adv Environ Res 7, cc.629-633.
Kose, S., Bayer, G.(1982). Schaumbildung im System Altglas-SiC und die Eigenschaften derartiger Schaumgläser. Glastech. Ber. 55, cc.151-160.
Laspidou, C.S., Rittmann, B.E.(2002). A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water research 36, cc.2711-2720.
Lee, N.M., Welander, T.(1996). The effect of different carbon sources on respiratory denitrification in biological wastewater treatment. Journal of fermentation and bioengineering 82, cc.277-285.
Li, L., Fan, M., Brown, R.C., Koziel, J.A., van Leeuwenach, J.(2009). Production of a new wastewater treatment coagulant from fly ash with concomitant flue gas scrubbing. J Hazard Mater 162, cc.1430-1437.
Li, X., Sun, S., Badgley, B.D., Sung, S., Zhang, H., He, Z.(2016). Nitrogen removal by granular nitritation-anammox in an upflow membrane-aerated biofilm reactor. Water research 94, cc.23-31.
Lin, D.F., Weng, C.H.(2001). Use of sewage sludge ash as brick material. J Environ Eng-Asce 127, cc.922-927.
Ma, Y., Sundar, S., Park, H., Chandran, K.(2015). The effect of inorganic carbon on microbial interactions in a biofilm nitritation-anammox process. Water Res 70, cc.246-254.
McCarty, P.L., Beck, L., St Amant, P.(1969). Biological denitrification of agricultural wastewaters by addition of organic materials. Purdue Univ Eng Ext Ser.
Metcalf, E., Eddy, H.P., Tchobanoglous, G.(1991). Wastewater engineering: treatment, disposal and reuse. McGraw-Hill, New York, pp. 749-750.
Miao, L., Wang, S., Zhu, R., Cao, T., Peng, Y.(2015). The effect of oxygen supply on nitrogen removal via nitrite using stored substrate (PHB) as the electron donor in SBRs. Biochemical Engineering Journal 103, cc.130-137.
Mudliar, S., Baneriee, S., Vaidya, A., Devotta, S.(2008). Steady state model for evaluation of external and internal mass transfer effects in an immobilized biofilm. Bioresource Technol 99, cc.3468-3474.
Mulder, J., Van Loosdrecht, M., Hellinga, C., Van Kempen, R.(2001). Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering. Water science and technology 43, cc.127-134.
Ni, S.Q., Meng, J.(2011). Performance and inhibition recovery of anammox reactors seeded with different types of sludge. Water Sci Technol 63, cc.710-718.
Peng, Y.-z., Yong, M., Wang, S.-y.(2007). Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process. Journal of Environmental Sciences 19, cc.284-289.
Pilcher, H.(2005). Microbiology: pipe dreams. Nature 437, cc.1227-1228.
Rafiei, B., Naeimpoor, F., Mohammadi, T.(2014). Bio-film and bio-entrapped hybrid membrane bioreactors in wastewater treatment: Comparison of membrane fouling and removal efficiency. Desalination 337, cc.16-22.
Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.-F., Darling, A., Malfatti, S., Swan, B.K., Gies, E.A.(2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, cc.431-437.
Robertson, L.A., Kuenen, J.G.(1983). Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. Microbiology 129, cc.2847-2855.
Ruscalleda Beylier, M., Balaguer, M.D., Colprim, J., Pellicer-Nàcher, C., Ni, B.J., Smets, B.F., Sun, S.P., Wang, R.C.(2011). Biological Nitrogen Removal from Domestic Wastewater. Environmental Biotechnology and Safety 6, cc.329-340.
Santos, D., Nunes, L.C., de Carvalho, G.G.A., Gomes, M.D., de Souza, P.F., Leme, F.D., dos Santos, L.G.C., Krug, F.J.(2012). Laser-induced breakdown spectroscopy for analysis of plant materials: A review. Spectrochim Acta B 71-72, cc.3-13.
Semmens, M.J., Dahm, K., Shanahan, J., Christianson, A.(2003). COD and nitrogen removal by biofilms growing on gas permeable membranes. Water research 37, cc.4343-4350.
Shalini, S.S., Joseph, K.(2013). Start-up of the SHARON and ANAMMOX process in landfill bioreactors using aerobic and anaerobic ammonium oxidising biomass. Bioresource technology 149, cc.474-485.
Sinha, B., Annachhatre, A.P.(2007). Partial nitrification—operational parameters and microorganisms involved. Reviews in Environmental Science and Bio/Technology 6, cc.285-313.
Skrifvars, B.J., Hupa, M., Backman, R., Hiltunen, M.(1994). Sintering Mechanisms of Fbc Ashes. Fuel 73, cc.171-176.
Soler-Jofra, A., Stevens, B., Hoekstra, M., Picioreanu, C., Sorokin, D., van Loosdrecht, M.C.M., Pérez, J.(2016). Importance of abiotic hydroxylamine conversion on nitrous oxide emissions during nitritation of reject water. Chemical Engineering Journal 287, cc.720-726.
Sri Shalini, S., Joseph, K.(2012). Nitrogen management in landfill leachate: application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process. Waste management 32, cc.2385-2400.
Strous, M., Heijnen, J., Kuenen, J., Jetten, M.(1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied microbiology and biotechnology 50, cc.589-596.
Strous, M., Van Gerven, E., Kuenen, J.G., Jetten, M.(1997). Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Applied and environmental microbiology 63, cc.2446-2448.
Su, W.F., 2008. Application of recycle porous diffusers in a SND-sequencing batch biofilm reactor (SBBR), Department of Environmental Science and Engineering. Tunghai University, Taichung, ROC.
Sun, S.P., Nacher, C.P.I., Merkey, B., Zhou, Q., Xia, S.Q., Yang, D.H., Sun, J.H., Smets, B.F.(2010). Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review. Environ Eng Sci 27, cc.111-126.
Tsuneda, S., Ohno, T., Soejima, K., Hirata, A.(2006). Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor. Biochem Eng J 27, cc.191-196.
Valverde-Pérez, B., Mauricio-Iglesias, M., Sin, G.(2016). Systematic design of an optimal control system for the SHARON-Anammox process. Journal of Process Control 39, cc.1-10.
Van de Graaf, A.A., de Bruijn, P., Robertson, L.A., Jetten, M.S., Kuenen, J.G.(1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142, cc.2187-2196.
Volland, S., Brötz, J.(2015). Lightweight aggregates produced from sand sludge and zeolitic rocks. Constr Build Mater 85, cc.22-29.
Volland, S., Kazmina, O., Vereshchagin, V., Dushkina, M.(2014). Recycling of sand sludge as a resource for lightweight aggregates. Constr Build Mater 52, cc.361-365.
Wang, L. K., Shammas, N. K., & Hung, Y. T. (2010). Advanced biological treatment processes. Vol. 9. Springer Science & Business Media, pp. 222-235.
Wei, Y., Ji, M., Li, R., Qin, F.(2012). Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste management 32, cc.448-455.
Weissenbacher, N., Loderer, C., Lenz, K., Mahnik, S.N., Wett, B., Fuerhacker, M.(2007). NOx, monitoring of a simultaneous nitrifying-denitrifying (SND) activated sludge plant at different oxidation reduction potentials. Water Res 41, cc.397-405.
Weng, C.H., Lin, D.F., Chiang, P.C.(2003). Utilization of sludge as brick materials. Adv Environ Res 7, cc.679-685.
Wijffels, R.H., Tramper, J.(1995). Nitrification by immobilized cells. Enzyme and Microbial Technology 17, cc.482-492.
Windey, K., De Bo, I., Verstraete, W.(2005). Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater. Water research 39, cc.4512-4520.
Wolff, E., Schwabe, W.K., Conceiçao, S.V.(2015). Utilization of water treatment plant sludge in structural ceramics. J Clean Prod 96, cc.282-289.
Won, S.G., Ra, C.S.(2011). Biological nitrogen removal with a real-time control strategy using moving slope changes of pH(mV)- and ORP-time profiles. Water Res 45, cc.171-178.
Wrage, N., Velthof, G.L., van Beusichem, M.L., Oenema, O.(2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33, cc.1723-1732.
Wu, Y.T., 2012. Application Hydroxylamine to Identify and Model Simultaneous Nitrification and Denitrification (SND) Process, Department of Environmental Science and Engineering. Tunghai University, Taichung, ROC.
Xiao, K., Zhou, L., He, B., Qian, L., Wan, S., Qu, L.(2016). Nitrogen and phosphorus removal using fluidized-carriers in a full-scale A2O biofilm system. Biochemical Engineering Journal 115, cc.47-55.
Xu, W., Xu, J.C., Liu, J., Li, H.X., Cao, B., Huang, X.F., Li, G.M.(2014). The utilization of lime-dried sludge as resource for producing cement. J Clean Prod 83, cc.286-293.
Yao, S., Ni, J.R., Ma, T., Li, C.(2013). Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp HA2. Bioresource Technol 139, cc.80-86.
Yoon, J.H., Kang, S.J., Oh, T.K.(2006). Dokdonella koreensis gen. nov., sp nov., isolated from soil. Int J Syst Evol Micr 56, cc.145-150.
Yu, R.-F., Liaw, S.-L., Cheng, W.-Y., Chang, C.-N.(2000). Performance enhancement of SBR applying real-time control. Journal of Environmental Engineering 126, cc.943-948.
Zhang, F., Peng, Y., Miao, L., Wang, Z., Wang, S., Li, B.(2017). A novel simultaneous partial nitrification Anammox and denitrification (SNAD) with intermittent aeration for cost-effective nitrogen removal from mature landfill leachate. Chemical Engineering Journal 313, cc.619-628.
Zhang, X., Yu, B., Zhang, N., Zhang, H., Wang, C., Zhang, H.(2016). Effect of inorganic carbon on nitrogen removal and microbial communities of CANON process in a membrane bioreactor. Bioresource technology 202, cc.113-118.
朱敬平, 李篤中.(2002). 污泥處置 (IV): 策略與永續利用. 台大工程學刊 84, cc.91-101.
宋學起, 彭永臻.(2005). 以氯化方法實現生物膜法短程硝化反應. 中國給水排水 21, cc.10-14.
李培睿, 李宗義, 王鴻磊, 王海磊.(2003). 序批式活性污泥法 (SBR). 河南師範大學學報 (自然科學版) 31, cc.72-75.
鄒高龍, 李小明, 李啟武, 曾光明, 劉醫璘, 廖德祥, 賈斌.(2009). 鹽度變化對 SBR 中硝化作用的動態影響研究. 環境工程學報 3, cc.595-600.
高大文, 彭永臻, 王淑瑩.(2005). 控制 pH 實現短程硝化反硝化生物脫氮技術. 哈爾濱工業大學學報 37, cc.1664-1666.
高景峰, 彭永臻, 王淑瑩.(2002). 溫度對亞硝酸型硝化/反硝化的影響. 高技術通訊 12, cc.88-93.
謝哲松.(1999). 活性污泥法之操作控制. 臺北市: 國立編譯館.
藍茜茹.(2011). 結合部分硝化, 厭氧氨氧化及脫硝作用於單一批次反應槽之發展. 交通大學環境工程系所學位元論文, cc.1-57.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top