跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪志淵
研究生(外文):Chin-Yuan Hung
論文名稱:圖書流通記錄之一般化相關規則找尋之研究
論文名稱(外文):The Research on Finding Generalized Association Rules from Library Circulation Records
指導教授:黃三益黃三益引用關係
指導教授(外文):San-Yih Hwang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊管理學系研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:70
中文關鍵詞:數位圖書館專題選粹服務相關規則新書推薦
外文關鍵詞:Association RulesDigital LibraryNew Book RecommendationSelective Dissemination of Information
相關次數:
  • 被引用被引用:19
  • 點閱點閱:255
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:6
中文提要
圖書館一直以來為讀者提供與保存各種不同型態的重要資訊。以我們中山大學的圖書館為例,每個月新進約有上千本圖書,數量之多,使得學生讀者難於確認出真正感到興趣的新圖書。本研究旨在找出讀者族群特性知識,並應用在圖書館的新書推薦上;我們從每日的圖書借閱資料庫中挖掘出讀者與圖書間的一般化相關規則,並交由圖書館專家詮釋規則上的知識運用於新書推薦,因此我們的方法不同於專題選粹服務(SDI),需要讀者在圖書館留下個人的喜好檔案。
本研究首先討論如何確認出與讀者圖書借閱行為有關且相互獨立的讀者屬性,再來提出三個演算法來找出large itemsets並做實驗來評量效率,除此之外,我們也訂出一套interesting rules的評量方法,最後我們報告在中山大學圖書館運用我們方法後的實際經驗。
Abstract
Libraries have long been widely recognized as import information-offering institutes. Thousands of new books are acquired per month by our university—a mid-sized university in Taiwan), and patrons may have difficulties identifying the small set of books that really interest them. This gives rise to the problem of finding an effective way to recommend patrons the newly arrived books in a library. In this work, we address this problem in finding generalized association rules between patrons and books. We first discuss how to identify relevant but independent patron attributes in regard of the books they checked out. Then, we propose a set of algorithms for generating large itemsets and evaluate their performance experimentally. In addition, we define interestingness of rules and propose an algorithm for pruning uninteresting rules. Finally, we apply our approach to the circulation data of National SUN Yat-Sen University library and report our experiences.
Contents
The Research on Finding Generalized Association Rules from Library Circulation Records 0
Abstract 5
Chapter 1 . Introduction 6
1.1. Motivation 6
1.2. Thesis Organization 7
Chapter 2 . Problem Description 8
Chapter 3 . Our Approach 13
3.1 . Identifying Relevant Patron Attributes 13
3.2 . Algorithms for Generating Large Itemsets 14
3.2.1. Problem Definition 14
3.2.2. Lattice Structure 15
3.2.3. Algorithm Basic 16
3.2.4. Algorithm K-pass 18
3.2.5. Algorithm MergePrune 20
3.3 . Identifying Interesting Rules 25
Chapter 4 . Evaluation Plan 30
4.1. Generation of Synthetic Data 30
4.2. Relative Performance of Algorithms 33
Chapter 5 . Empirical Results 39
5.1. Identifying relevant patron attributes 39
5.2. Generating patron-book rules 41
5.3. Pruning uninteresting rules 42
5.4. Effectiveness of the patron-book rules 43
Chapter 6 . Literature Review 49
6.1. SDI (Selective Dissemination of Information) 49
6.2. Recommendation Approaches 50
6.3. Data Mining Methodology 52
6.4. Clustering 53
6.5. Classification 53
6.6. Association Rules 54
Chapter 7 . Conclusion 59
7.1. Summary 59
7.2. Contributions 59
Bibliography 60
Appendix 1 63
Interesting Rules 63
Appendix 2 67
Chinese Classification Scheme 67
Bibliography
[Agga98] C. C. Aggarwal, Z. Sun, and P. S. Yu, “Online algorithms for finding profile association rules,” Proceedings of the 1998 ACM 7th international conference on Information and knowledge management, pages 86-95, 1998.
[Agra93] R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between sets of items in large databases,” Proceedings of the ACM SIGMOD Conference on Management of Data, pages 207-216, May 1993.
[Agra94] R. Agrawal, R. Srikant, “Fast Algorithm for Mining Association Rules,” Proceedings of the VLDB conference, pages 478-499, September 1994.
[Agra95] R. Agrawal, R. Srikant, “Mining Generalized Association Rules,” Proceedings of the 21 st VLDB Conference Zurich, Swizerland, pages 409-419, 1995.
[Agra96] R. Agrawal, R. Srikant, “Mining Quantitative Association Rules in Large Relational Tables,” Proceedings of the ACM SIGMOD Conference on Management of Data, pages 1-12, 1996
[Anan98] S.S. Anand, A.R. Patrick, J.G Hughes, and D.A. Bell, “Data Mining Methodology for Cross Sales” Knowledge-Based Systems Vol.10, pages 449-461, 1998.
[Brin97] S. Brin, R.Motwani, J. D. Ullman, and S. Tsur, “Dynamic Itemset Counting and Implication Rules for Market Basket Data,” Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 255-264, New York, May 1997.
[Clar89] P. Clark, and T. Niblett, “The CN2 Induction Algorithm,” In Machine Learning 3, pages 261-283, 1989.
[Han92] J. Han, Y. Cai, and N. Cercone, “Knowledge Discovery in Database: An Attribute-Oriented Approach,” Proceedings of the 18th VLDB Conference, pages 547-559, Vancouver, British Columbia, Canada 1992.
[Han95] J. Han, and Y. Fu, “Discovery of Multiple-Level Association Rules from Large Databases,” Proceedings of the 21 st VLDB Conference Zurich, Swizerland, pages 420-431, 1995.
[Kauf90] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an Introduction to Cluster Analysis, John Wiley & Sons, Inc., 1990.
[Mac67] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” Proceedings of the Fifth Berkeley Symposium on Mathematical statistics and probability, pages 281-297,1967.
[Ng94] R. Ng and J. Han, “Efficient and Effective Clustering Methods for Spatial Data Mining,” Proceedings of International Conference on Very Large Data Bases, pages 144-155, Sept 1994.
[Park95] J. S. Park, M.-S. Chen, and P. S. Yu, “An Effective Hash Based Algorithm for Mining Association Rules,” Proceedings of ACM SIGMOD, pages 175-186, May 1995.
[Quin86] J R. Quinlan, “Induction of deciscion trees,” In Machine learning, volume 1, pages 81-106. Kluwer Academic Publishers, 1986.
[Quin93] J R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauffman, 1993.
[Raym98] J. Mooney Raymond, N. Bennett Paul, and Roy Loriene, “Book Recommending Using Text Categorization with Extracted Information,” In AAAI-98 /ICML-98 Workshop on Learning for Text Categorization, pages 49-54, 1998.
[Rich91] E. Rich, and K. Knight, Artificial Intelligence, McGraw-Hill, New York, 1991.
[Salt68] G. Salton, Automatic Information Organization and Retrieval, McGraw-Hill, New York, 1968.
[Shar95] U. Shardanand and P. Maes, “Social Information Filtering: Algorithms for Automating “Word of Mouth”, ” Conference proceedings on Human factors in computing systems, Pages 210 – 217, 1995.
[Smyt00] B. Smyth and P. Cotter, “A Personalized Television Listings Service,” Communications of the ACM, pages 107-111, August 2000.
[Yan94] T. W. Yan and H. Garcia-Molina, “Index Structures for Selective Dissemination of Information Under the Boolean Model,” ACM Transactions on Database Systems, pages 332-364, June 1994.
[賴永祥89] 賴永祥,中國圖書分類法,增訂七版,三民書局,1989.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top