跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 08:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳敏聖
研究生(外文):WU, MIN-SHENG
論文名稱:生質油混合丁醇之化學動力機制與液滴燃燒特性
論文名稱(外文):Study on the Chemical Kinetics and Combustion Characteristics of Droplets of Bio-oil Blended with Butanol Fuels
指導教授:楊授印
指導教授(外文):YANG, SHOU-YIN
口試委員:張學斌吳志勇吳明勳魏憲鴻侯順雄陳冠邦
口試委員(外文):CHANG, SHYUE-BINWu, CHIH-YUNGWU, MING-HSUNWEI, HSIEN-HUNGHOU, SHUHN-SHYURNGCHEN, GUAN-BANG
口試日期:2018-01-11
學位類別:博士
校院名稱:國立虎尾科技大學
系所名稱:動力機械工程系機械與機電工程博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:119
中文關鍵詞:生質油液滴燃燒熱重分析傅立葉紅外線光譜格拉曉夫數
外文關鍵詞:Bio-oilDroplet combustionThermo-gravimetric analysisFourier infrared spectroscopyGrashof number
相關次數:
  • 被引用被引用:1
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對生質物於快速裂解(fast pyrolysis)及慢速裂解(slow pyrolysis)所產製之生質油,探討快速裂解生質油混合丁醇及慢速裂解生質油混合丁醇液滴燃燒特性其生質油混摻丁醇比例為0 vol.%(純生質油)、50 vol.%、70 vol.%、90 vol.%及100 vol.%(純丁醇),以懸掛單顆液滴之方式,在相同溫度723K引燃液滴,透過高速攝影同步紋影技術及化學螢光法分析生質油混摻不同丁醇比例之液滴燃燒行為,透過紅外顯熱像儀量測液滴表面溫度及利用熱重分析(TGA)串聯傅立葉紅外線光譜(FTIR)和氣相層析質譜法(GC-MS)分析燃油之特性。生質油的組成特性受到生質物中纖維素、半纖維素和木質素的裂解特性影響,因此生質油中富含多種化合物而當中含較多的脂肪族化合物,則會導致燃燒時產出芳香族化合物,而生質油混合丁醇明顯可以降低生成微粒前驅物的多環芳香烴及油品黏度和提高熱值。熱重分析中顯示生質油不同的重量變化。快速裂解生質油中包含較多的輕質組份(C2-C8)及水分,在低沸點(<434K)組份較容易揮發;然而,慢速裂解油中則包含較多的重質組份(C16-C21)其化合物沸點也相對較高(>573K),由於生質油屬於高濃度含氧有機物,容易發生聚合反應形成殘留物,在高溫中持續加熱導致殘留物燃燒,產生放熱反應;在受熱蒸發過程中主要的官能基可以分為兩個部分,第一部分為輕質化合物在低溫的裂解,其吸熱反應的產物主要含有O-H、C-H、C=C、C-O官能基;第二部分為重質化合物在高溫下的聚合和燃燒,其放熱反應時主要產物為CO2及CO。在高比例混合丁醇(10 % bio-oil/90 % butanol,PF10B90)的熱分解動力學,303K~412K活化能為60.61KJ/mol,在723K~756K活化能則為8.83 KJ/mol,表示可以改善揮發性物質的釋放組份,混合燃油中揮發階段的活化能逐漸增加和燃燒階段的活化能逐漸降低,有助於明顯改善生質油的燃燒性能。快速裂解和慢速裂解生質油且皆有較劇烈的氣泡膨脹或微爆。由於慢速裂解生質油揮發性較低的影響,造成蒸發時間較長,且高黏度會抑制揮發性組分擴散到表面,此現象是因為表面張力的增加,抑制了液滴表面液相到氣相的質量擴散;當混合了高比例的丁醇,使液體密度降低,而密度低的燃料從高濃度區向火焰區域擴散的速度增加,使燃燒時間變短,此外,表面溫度上升時間逐漸減少,由於液體密度改變了氣體擴散係數,而導致影響液滴表面的升溫時間。生質油液滴燃燒的C2*化學螢光亮度幾乎包含著液滴的火焰下游區域,表示大部分燃料在此反應,C2*化學螢光的輻射強度增加,特別為火焰尾流區域,此反應可能為中間產物與碳微粒在尾端燃燒。當生質油混合丁醇時,C2*化學螢光逐漸減弱,這表示減少微粒的形成。另一方面,生質油混合丁醇的Grashof number (Gr數)明顯地增加,由於丁醇揮發性增強了史蒂芬通量,本研究在較高混合丁醇比例下和產生較高的Gr數,皆有助於減少微粒煙尾的生成。
In this study, the bio-oils produced by fast pyrolysis and slow pyrolysis were used to investigate the combustion characteristics of droplets of bio-oil blended with butanol fuels The proportion of the bio-oil blended with butanol was 0 vol.% (pure bio-oil), 50 vol.%, 70 vol.%, 90 vol.% and 100 vol.% (pure butanol), respectively. Using a suspended droplet heating device at the same temperature 723K.When the droplets were burned, the droplet combustion behaviors of the bio-oil blended with different butanol ratios were analyzed by high-speed photography synchronous schlieren and chemiluminescence. The surface temperature of the droplets were measured by the infrared thermal imaging camera. The characteristics of fuels were analyzed by using thermo-gravimetric analyzer (TGA) coupled with a fourier-transform infrared spectrometers (FTIR) and the gas chromatography mass spectrometry (GC-MS). The composition of the bio-oil was affected by the pyrolysis characteristics of cellulose, hemicellulose and lignin in the biomass. Therefore, the bio-oil contained more aliphatic compounds, leading to produce aromatic compounds when bio-oil burned. When bio-oil blended with butanol, the polycyclic aromatic hydrocarbons of the soot precursors decreased, the viscosity of mixed bio-oils decreased, and the heat value of mixed bio-oils increased. The weight change of the pure bio-oil in the TGA was observed. The fast pyrolysis bio-oil contained more water and light components (C2-C8) evaporating in low boiling point (<434K). However, the slow pyrolysis bio-oil contained more heavy components (C16-C21) which had relatively high boiling points (>573K). Since the bio-oil belonged to a high concentration of oxygen-containing organic matter, the residues of bio-oil was produced by a polymerization reaction. The residues were continuously heated at a high temperature to generate exothermic reaction. The main functional groups in the thermal evaporation process could be divided into two parts. The first part was O-H, C-H, C=C, and C-O functional groups of the substances produced during the endothermic reaction when the light compounds pyrolysised at low temperature; the second part was the products, CO2 and CO, produced during the exothermic reaction when heavy compounds polymerized and combustion at high temperature. In the thermal decomposition kinetics, high-mixed butanol (10 % bio-oil/90 % butanol, PF10B90) had activation energy (60.61 KJ/mol) from 303K to 412K and activation energy (8.83 KJ/mol) from 723K to 756K, indicating that the release of volatile substances could be improved. The activation energy of the volatile stage in the Bio-oil Blended with Butanol Fuels gradually increased and the activation energy in the combustion stage gradually decreased, which significantly improved the combustion performance of the mixed bio-oils. Fast pyrolysis bio-oil and slow pyrolysis bio-oil both had bubble growth or micro-expansion. Because the slow pyrolysis bio-oil was low volatile, it caused the longer evaporation time of the droplets. The high viscosity inhibits the diffusion of the volatile components to the surface because the surface tension was increased and the mass diffusion of the liquid phase to the gas phase on the surface of the droplet was suppressed. When a high proportion of butanol was mixed, the density of the liquid was lowered. The diffusion rate of the low-density fuel from the high concentration zone to the flame zone was increased, so that the burning time was decreased. In addition, the surface temperature rise time was gradually decreased due to the change of liquid density and the gas diffusion coefficient, which affected the heating time of the droplet surface. The C2* chemiluminescence of the combusted bio-oil droplets surrounded in the flame downstream zone of the droplet, indicated that most of the fuel was reacted here. The radiation intensity of the C2* chemiluminescence was increased, especially in the flame wake zone. This reaction may be the intermediate product and the soot burned. When the butanol blended in bio-oil, the radiation intensity of the C2* chemiluminescence gradually decreased, which indicated that the soot formation was reduced. On the other hand, The Gr number of the bio-oil with butanol increased significantly, because the butanol volatility enhanced the Stefan flux. In this study, higher mixed butanol ratios and producing higher Gr numbers both helped to reduce the formation of the soot tail.
摘要...............................i
Abstract..........................ii
誌謝..............................iv
目錄..............................v
表目錄............................viii
圖目錄............................ix
符號說明..........................xi
第一章 前言...................................1
1.1 為何使用生質燃料?.........................1
1.2生質物裂解產油技術.........................2
1.2.1 生質物快速裂解..........................3
1.2.2 生質物慢速裂解..........................3
1.3 為何研究生質液滴燃燒?......................3
1.4 研究重點..................................4
1.5 論文架構..................................5
第二章 生質液態燃料特性及應用問題...............6
2.1 生質液態燃料特性...........................6
2.1.1 生質物性質..............................6
2.1.2 裂解製程性質............................18
2.2生質液態燃料動力機械測試....................24
2.3生質液態燃料噴霧燃燒........................27
第三章 液滴燃燒................................33
3.1液滴蒸發與燃燒基礎理論.......................36
3.2多組份液滴燃................................42
3.3生質油/醇類液滴燃燒..........................46
3.4小結........................................48
第四章 實驗設備與方法............................49
4.1單顆液滴燃燒實驗設備..........................49
4.1.1 背光法量測................................50
4.1.2 火焰影像量測..............................51
4.1.3 顯微影像量測..............................52
4.1.4 紅外線熱像儀量測...........................52
4.1.5 自然螢光法量測.............................54
4.1.6 紋影流場可視化技術.........................57
4.2 燃油備製....................................60
4.2.1 快速裂解系統...............................60
4.2.2 慢速裂解系統...............................61
4.2.3 混合燃油備製...............................62
4.2.4燃油特性分析及方法...........................63
4.3 TG-FTIR量測系統..............................65
4.3.1動力學計算..................................67
第五章 結果與討論.................................69
5.1 燃油特性分析..................................69
5.1.1 生質油氣相層析質譜分析.......................69
5.1.2 熱重分析....................................71
5.1.3 傅立葉轉換紅外光譜分析.......................76
5.2 生質油混合丁醇液滴燃燒特性.....................78
5.2.1 液滴燃燒直接影像............................78
5.2.2 液滴燃燒直徑變化............................80
5.2.3 液滴表面溫度................................82
5.2.4 液滴燃燒火焰影像.............................83
5.2.5 液滴燃燒內部影像觀測.........................86
5.2.6 液滴燃燒化學螢光分析.........................89
5.2.7 生質油混合不同比例丁醇Grashof number之變化....92
第六章 結論及未來工作..............................94
6.1 結論..........................................94
6.2 未來工作......................................97
參考文獻..........................................99
Extended Abstract................................115


[1]International Energy Agency, IEA, http://www.iea.org.
[2]S. I. Yang, M. S. Wu, C. Y. Wu, "Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products", Energy 66 (2014) 162-171.
[3]J. V. Kumar, B. C. Pratt, "Compositional analysis of some renewable biofuels", American Laboratory 28 (1996) 15-20.
[4]P. Basu, Biomass gasification, pyrolysis and torrefaction: practical design and theory, Academic press2013.
[5]V. Stamatov, D. Honnery, J. Soria, "Combustion properties of slow pyrolysis bio-oil produced from indigenous Australian species", Renewable Energy 31 (2006) 2108-2121.
[6]R. Omar, A. Idris, R. Yunus, K. Khalid, M.I. Aida Isma, "Characterization of empty fruit bunch for microwave-assisted pyrolysis", Fuel 90 (2011) 1536-1544.
[7]D. Mohan, C. U. Pittman, P. H. Steele, "Pyrolysis of wood/biomass for bio-oil: a critical review", Energy & fuels 20 (2006) 848-889.
[8]T. G. Bridgeman, J. M. Jones, A. Williams, "Overview of solid fuels, characteristics and origin", Handbook of Combustion: Online, (2010) 1-30.
[9]M. Solo, "Mattalorest", Aikakawsh 37 (1965) 127.
[10]S. W. Kim, B. S. Koo, J. W. Ryu, J. S. Lee, C. J. Kim, D. H. Lee, G. R. Kim, S. Choi, "Bio-oil from the pyrolysis of palm and Jatropha wastes in a fluidized bed", Fuel Processing Technology 108 (2013) 118-124.
[11]A. M. Zmiewski, N. L. Hammer, R. A. Garrido, T. G. Misera, C. G. Coe, J. A. Satrio, "Exploring the Products from Pinewood Pyrolysis in Three Different Reactor Systems", Energy & Fuels 29 (2015) 5857-5864.
[12]P. K. Kanaujia, "Production, Upgrading and Analysis of Bio-oils Derived from Lignocellulosic Biomass", Polysaccharides: Bioactivity and Biotechnology (2014) 1-26.
[13]X. Gu, X. Ma, L. Li, C. Liu, K. Cheng, Z. Li, "Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS", Journal of Analytical and Applied Pyrolysis 102 (2013) 16-23.
[14]T. J. Hilbers, Z. Wang, B. Pecha, R. J. M. Westerhof, S. R. A. Kersten, M. R. Pelaez-Samaniego, M. Garcia-Perez, "Cellulose-Lignin interactions during slow and fast pyrolysis", Journal of Analytical and Applied Pyrolysis 114 (2015) 197-207.
[15]V. Mamleev, S. Bourbigot, M. Le Bras, J. Yvon, "The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis", Journal of Analytical and Applied Pyrolysis 84 (2009) 1-17.
[16]M. Van de Velden, J. Baeyens, A. Brems, B. Janssens, R. Dewil, "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction", Renewable Energy 35 (2010) 232-242.
[17]A. Demirbaş, "Mechanisms of liquefaction and pyrolysis reactions of biomass", Energy conversion and management 41 (2000) 633-646.
[18]V. Mamleev, S. Bourbigot, J. Yvon, "Kinetic analysis of the thermal decomposition of cellulose: The main step of mass loss", Journal of Analytical and Applied Pyrolysis 80 (2007) 151-165.
[19]Y. C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, G. W. Huber, "Kinetics and mechanism of cellulose pyrolysis", The Journal of Physical Chemistry C 113 (2009) 20097-20107.
[20]L. Burhenne, J. Messmer, T. Aicher, M. P. Laborie, "The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis", Journal of Analytical and Applied Pyrolysis 101 (2013) 177-184.
[21]J. A. Comesaña, M. Nieströj, E. Granada, A. Szlek, "TG-DSC analysis of biomass heat capacity during pyrolysis process", Journal of the Energy Institute 86 (2013) 153-159.
[22]H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, "Characteristics of hemicellulose, cellulose and lignin pyrolysis", Fuel 86 (2007) 1781-1788.
[23]V. Dhyani, T. Bhaskar, "A comprehensive review on the pyrolysis of lignocellulosic biomass", Renewable Energy, (2017).
[24]H. Yang, R. Yan, H. Chen, C. Zheng, D. H. Lee, D. T. Liang, "In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin", Energy & Fuels 20 (2006) 388-393.
[25]K. Raveendran, A. Ganesh, K. C. Khilar, "Pyrolysis characteristics of biomass and biomass components", Fuel 75 (1996) 987-998.
[26]S. B. Lee, O. Fasina, "TG-FTIR analysis of switchgrass pyrolysis", Journal of Analytical and Applied Pyrolysis 86 (2009) 39-43.
[27]O. Fasina, B. Littlefield, "TG-FTIR analysis of pecan shells thermal decomposition", Fuel Processing Technology 102 (2012) 61-66.
[28]C. Quan, N. Gao, Q. Song, "Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization", Journal of Analytical and Applied Pyrolysis 121 (2016) 84-92.
[29]W. T. Tsai, M. K. Lee, Y. M. Chang, "Fast pyrolysis of rice husk: Product yields and compositions", Bioresour Technol 98 (2007) 22-28.
[30]Q. Lu, X. l. Yang, X. f. Zhu, "Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk", Journal of Analytical and Applied Pyrolysis 82 (2008) 191-198.
[31]J. L. Zheng, X. F. Zhu, Q. X. Guo, Q. S. Zhu, "Thermal conversion of rice husks and sawdust to liquid fuel", Waste Manag 26 (2006) 1430-1435.
[32]H. Zhang, R. Xiao, H. Huang, G. Xiao, "Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor", Bioresour Technol 100 (2009) 1428-1434.
[33]J. P. Bok, H. S. Choi, Y. S. Choi, H. C. Park, S. J. Kim, "Fast pyrolysis of coffee grounds: Characteristics of product yields and biocrude oil quality", Energy 47 (2012) 17-24.
[34]G. B. Chen, Y. H. Li, G. L. Chen, W. T. Wu, "Effects of catalysts on pyrolysis of castor meal", Energy 119 (2017) 1-9.
[35]J. Akhtar, N. Saidina Amin, "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis", Renewable and Sustainable Energy Reviews 16 (2012) 5101-5109.
[36]G. Chang, Y. Huang, J. Xie, H. Yang, H. Liu, X. Yin, C. Wu, "The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust", Energy Conversion and Management 124 (2016) 587-597.
[37]S. Şensöz, M. Can, "Pyrolysis of pine (Pinus brutia Ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields", Energy Sources 24 (2002) 347-355.
[38]M. Garcia-Perez, T. T. Adams, J. W. Goodrum, D. P. Geller, K. C. Das, "Production and Fuel Properties of Pine Chip Bio-oil/Biodiesel Blends", Energy & Fuels 21 (2007) 2363-2372.
[39]M. E. Arias, O. Polvillo, J. Rodríguez, M. Hernández, J. A. González-Pérez, F. J. González-Vila, "Thermal transformations of pine wood components under pyrolysis/gas chromatography/mass spectrometry conditions", Journal of Analytical and Applied Pyrolysis 77 (2006) 63-67.
[40]A. Bridgwater, G. Peacocke, "Fast pyrolysis processes for biomass", Renewable and sustainable energy reviews 4 (2000) 1-73.
[41]A. Bridgwater, S. Bridge, "A review of biomass pyrolysis and pyrolysis technologies", Biomass pyrolysis liquids upgrading and utilization (1991) 11-92.
[42]J. Shen, X. S. Wang, M. Garcia-Perez, D. Mourant, M. J. Rhodes, C. Z. Li, "Effects of particle size on the fast pyrolysis of oil mallee woody biomass", Fuel 88 (2009) 1810-1817.
[43]W. N. R. W. Isahak, M. W. M. Hisham, M. A. Yarmo, T. Y. Yun Hin, "A review on bio-oil production from biomass by using pyrolysis method", Renewable and Sustainable Energy Reviews 16 (2012) 5910-5923.
[44]M. Asadullah, M. Anisur Rahman, M. Mohsin Ali, M. Abdul Motin, M. Borhanus Sultan, M. Robiul Alam, M. Sahedur Rahman, "Jute stick pyrolysis for bio-oil production in fluidized bed reactor", Bioresour Technol 99 (2008) 44-50.
[45]E. Lazzari, T. Schena, C. T. Primaz, G. P. da Silva Maciel, M. E. Machado, C. A. L. Cardoso, R. A. Jacques, E. B. Caramão, "Production and chromatographic characterization of bio-oil from the pyrolysis of mango seed waste", Industrial Crops and Products 83 (2016) 529-536.
[46]S. J. Kim, S. H. Jung, J. S. Kim, "Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds", Bioresour Technol 101 (2010) 9294-9300.
[47]A. Bridgwater, D. Meier, D. Radlein, "An overview of fast pyrolysis of biomass", Organic geochemistry 30 (1999) 1479-1493.
[48]M. Asadullah, M. A. Rahman, M. M. Ali, M. S. Rahman, M. A. Motin, M. B. Sultan, M. R. Alam, "Production of bio-oil from fixed bed pyrolysis of bagasse", Fuel 86 (2007) 2514-2520.
[49]O. Onay, O. M. Kockar, "Slow, fast and flash pyrolysis of rapeseed", Renewable Energy 28 (2003) 2417-2433.
[50]P. Quaak, H. Knoef, H. Stassen, "Energy from biomass: a review of combustion and gasification technologies", The World Bank (1999).
[51]R. E. Guedes, A. S. Luna, A. R. Torres, "Operating parameters for bio-oil production in biomass pyrolysis: A review", Journal of Analytical and Applied Pyrolysis 129 (2018) 134-149.
[52]M. N. Islam, R. Zailani, F. N. Ani, "Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and itscharacterisation", Renewable Energy 17 (1999) 73-84.
[53]W. J. DeSisto, N. Hill, S. H. Beis, S. Mukkamala, J. Joseph, C. Baker, T. H. Ong, E. A. Stemmler, M. C. Wheeler, B. G. Frederick, A. van Heiningen, "Fast Pyrolysis of Pine Sawdust in a Fluidized-Bed Reactor", Energy & Fuels 24 (2010) 2642-2651.
[54]M. Amutio, G. Lopez, M. Artetxe, G. Elordi, M. Olazar, J. Bilbao, "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor", Resources Conservation and Recycling 59 (2012) 23-31.
[55]J. L. Zheng, "Pyrolysis oil from fast pyrolysis of maize stalk", Journal of Analytical and Applied Pyrolysis 83 (2008) 205-212.
[56]T. Kan, V. Strezov, T. J. Evans, "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters", Renewable and Sustainable Energy Reviews 57 (2016) 1126-1140.
[57]A. Bridgwater, P. Carson, M. Coulson, "A comparison of fast and slow pyrolysis liquids from mallee", International journal of global energy issues 27 (2007) 204-216.
[58]A. V. Bridgwater, "Review of fast pyrolysis of biomass and product upgrading", Biomass and Bioenergy 38 (2012) 68-94.
[59]P. Basu, "Biomass gasification and pyrolysis: practical design and theory", Academic press (2010).
[60]A. Demirbas, G. Arin, "An overview of biomass pyrolysis", Energy sources 24 (2002) 471-482.
[61]M. L. Boroson, J. B. Howard, J. P. Longwell, W. A. Peters, "Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars", AIChE Journal 35 (1989) 120-128.
[62]M. N. Uddin, W. M. A. W. Daud, H. F. Abbas, "Effects of pyrolysis parameters on hydrogen formations from biomass: a review", RSC Advances 4 (2014) 10467-10490.
[63]A. E. Pütün, N. Özbay, E. Apaydın Varol, B. B. Uzun, F. Ateş, "Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product", International journal of energy research 31 (2007) 506-514.
[64]L. Fagernäs, E. Kuoppala, P. Simell, "Polycyclic Aromatic Hydrocarbons in Birch Wood Slow Pyrolysis Products", Energy & Fuels 26 (2012) 6960-6970.
[65]S. Thangalazhy-Gopakumar, S. Adhikari, R. B. Gupta, S. D. Fernando, "Influence of Pyrolysis Operating Conditions on Bio-Oil Components: A Microscale Study in a Pyroprobe", Energy & Fuels 25 (2011) 1191-1199.
[66]C. Branca, P. Giudicianni, C. Di Blasi, "GC/MS Characterization of Liquids Generated from Low-Temperature Pyrolysis of Wood", Industrial & Engineering Chemistry Research 42 (2003) 3190-3202.
[67]H. Ben, A. J. Ragauskas, "Comparison for the compositions of fast and slow pyrolysis oils by NMR characterization", Bioresour Technol 147 (2013) 577-584.
[68]A. Hossain, P. Davies, "Pyrolysis liquids and gases as alternative fuels in internal combustion engines–A review", Renewable and Sustainable Energy Reviews 21 (2013) 165-189.
[69]M. Ikura, M. Stanciulescu, E. Hogan, "Emulsification of pyrolysis derived bio-oil in diesel fuel", Biomass and Bioenergy 24 (2003) 221-232.
[70]S. I. Yang, T. C. Hsu, C. Y. Wu, K. H. Chen, Y. L. Hsu, Y. H. Li, "Application of biomass fast pyrolysis part II: The effects that bio-pyrolysis oil has on the performance of diesel engines", Energy 66 (2014) 172-180.
[71]A. Maiboom, X. Tauzia, "NOx and PM emissions reduction on an automotive HSDI Diesel engine with water-in-diesel emulsion and EGR: An experimental study", Fuel 90 (2011) 3179-3192.
[72]C. Bertoli, R. Calabria, J. D’Alessio, N. Del Giacomo, M. Lazzaro, P. Massoli, V. Moccia, "Diesel engines fueled by wood pyrolysis oil: feasibility and perspectives", SAE Technical Paper (2001) 2001-24-0041.
[73]C. Bertoli, J. D'Alessio, N. Del Giacomo, M. Lazzaro, P. Massoli, V. Moccia, "Running Light-Duty DI Diesel Engines with Wood Pyrolysis Oil", SAE Technical Paper (2000) 2000-01-2975.
[74]L. Deng, J. Ye, X. Jin, D. Che, "Transformation and release of potassium during fixed-bed pyrolysis of biomass", Journal of the Energy Institute 91 (2018) 630-637.
[75]G. López Juste, J. J. Salvá Monfort, "Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor", Biomass and Bioenergy 19 (2000) 119-128.
[76]T. Y. Kim, S. H. Lee, "Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a DI diesel engine", International Journal of Automotive Technology 16 (2015) 903-912.
[77]T. Y. Kim, S. Lee, K. Kang, "Performance and emission characteristics of a high-compression-ratio diesel engine fueled with wood pyrolysis oil-butanol blended fuels", Energy 93 (2015) 2241-2250.
[78]G. W. Huber, S. Iborra, A. Corma, "Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering", Chemical Reviews 106 (2006) 4044-4098.
[79]Z. Su-Ping, "Study of Hydrodeoxygenation of Bio-Oil from the Fast Pyrolysis of Biomass", Energy Sources 25 (2003) 57-65.
[80]Q. Bu, H. Lei, A.H. Zacher, L. Wang, S. Ren, J. Liang, Y. Wei, Y. Liu, J. Tang, Q. Zhang, R. Ruan, "A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis", Bioresour Technol 124 (2012) 470-477.
[81]C. Baumgarten, "Mixture formation in internal combustion engines", Springer Science & Business Media (2006).
[82]S. McAllister, J. Y. Chen, A. C. Fernandez-Pello, "Fundamentals of combustion processes", Springer (2011).
[83]S. H. Park, H. J. Kim, H. K. Suh, C. S. Lee, "Experimental and numerical analysis of spray-atomization characteristics of biodiesel fuel in various fuel and ambient temperatures conditions", International Journal of Heat and Fluid Flow 30 (2009) 960-970.
[84]S. I. Yang, T. C. Hsu, M. S. Wu, "Spray combustion characteristics of kerosene/bio-oil part II: Numerical study", Energy 115 (2016) 458-467.
[85]S. I. Yang, M. S. Wu, T. C. Hsu, "Spray combustion characteristics of kerosene/bio-oil part I: Experimental study", Energy 119 (2017) 26-36.
[86]S. I. Yang, M. S. Wu, T. C. Hsu, "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass", Energy 126 (2017) 854-867.
[87]D. Nguyen, D. Honnery, "Combustion of bio-oil ethanol blends at elevated pressure", Fuel 87 (2008) 232-243.
[88]J. L. Zheng, Y. P. Kong, "Spray combustion properties of fast pyrolysis bio-oil produced from rice husk", Energy Conversion and Management 51 (2010) 182-188.
[89]S. P. Krumdieck, J. W. Daily, "Evaluating the Feasibility of Biomass Pyrolysis Oil for Spray Combustion Applications", Combustion Science and Technology 134 (2010) 351-365.
[90]B. J. Lin, W. H. Chen, W. M. Budzianowski, C. T. Hsieh, P. H. Lin, "Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers", Applied Energy 178 (2016) 746-757.
[91]Z. Guo, S. Wang, X. Wang, "Stability mechanism investigation of emulsion fuels from biomass pyrolysis oil and diesel", Energy 66 (2014) 250-255.
[92]H. Watanabe, Y. Suzuki, T. Harada, Y. Matsushita, H. Aoki, T. Miura, "An experimental investigation of the breakup characteristics of secondary atomization of emulsified fuel droplet", Energy 35 (2010) 806-813.
[93]A. Alcala, A. V. Bridgwater, "Upgrading fast pyrolysis liquids: Blends of biodiesel and pyrolysis oil", Fuel 109 (2013) 417-426.
[94]Y. Liu, J. Li, C. Jin, "Fuel spray and combustion characteristics of butanol blends in a constant volume combustion chamber", Energy Conversion and Management 105 (2015) 1059-1069.
[95]F. C. Lujaji, A. A. Boateng, M. Schaffer, P. L. Mtui, I. S. N. Mkilaha, "Spray atomization of bio-oil/ethanol blends with externally mixed nozzles", Experimental Thermal and Fluid Science 71 (2016) 146-153.
[96]A. Atmanli, "Comparative analyses of diesel–waste oil biodiesel and propanol, n-butanol or 1-pentanol blends in a diesel engine", Fuel 176 (2016) 209-215.
[97]M. L. Botero, Y. Huang, D. L. Zhu, A. Molina, C. K. Law, "Synergistic combustion of droplets of ethanol, diesel and biodiesel mixtures", Fuel 94 (2012) 342-347.
[98]Y. C. Liu, A. J. Savas, C. T. Avedisian, "The spherically symmetric droplet burning characteristics of Jet-A and biofuels derived from camelina and tallow", Fuel 108 (2013) 824-832.
[99]P. M. Guerieri, S. DeCarlo, B. Eichhorn, T. Connell, R. A. Yetter, X. Tang, Z. Hicks, K. H. Bowen, M. R. Zachariah, "Molecular Aluminum Additive for Burn Enhancement of Hydrocarbon Fuels", J Phys Chem A 119 (2015) 11084-11093.
[100]C. H. Wang, X. Q. Liu, C. K. Law, "Combustion and microexplosion of freely falling multicomponent droplets", Combustion and Flame 56 (1984) 175-197.
[101]J. H. Bae, C. T. Avedisian, "Soot Emissions from Spherical Droplet Flames for Mixtures of JP8 and Tripropylene Glycol Monomethyl Ether", Environmental Science & Technology 39 (2005) 8008-8013.
[102]R. Calabria, F. Chiariello, P. Massoli, "Combustion fundamentals of pyrolysis oil based fuels", Experimental Thermal and Fluid Science 31 (2007) 413-420.
[103]C. Chauveau, M. Birouk, I. Gökalp, "An analysis of the d2-law departure during droplet evaporation in microgravity", International Journal of Multiphase Flow 37 (2011) 252-259.
[104]K. L. Pan, M. C. Chiu, "Droplet combustion of blended fuels with alcohol and biodiesel/diesel in microgravity condition", Fuel 113 (2013) 757-765.
[105]A. Lee, C. K. Law, A. Randolph, "Aerothermochemical studies of energetic liquid materials. 2. Combustion and microexplosion of droplets of organic azides", Combustion and flame 71 (1988) 123-136.
[106]Y. Xu, I. Keresztes, A. M. Condo, D. Phillips, P. Pepiot, C. T. Avedisian, "Droplet combustion characteristics of algae-derived renewable diesel, conventional #2 diesel, and their mixtures", Fuel 167 (2016) 295-305.
[107]M. S. Wu, S. I. Yang, "Combustion characteristics of multi-component cedar bio-oil/kerosene droplet", Energy 113 (2016) 788-795.
[108]A. Ambekar, A. K. Maurya, A. Chowdhury, "Droplet combustion studies of nitromethane and its blends", Experimental Thermal and Fluid Science 93 (2018) 431-440.
[109]D. P. Mishra, A. Patyal, M. Padhwal, "Effects of gellant concentration on the burning and flame structure of organic gel propellant droplets", Fuel 90 (2011) 1805-1810.
[110]S. I. Yang, M. S. Wu, "The droplet combustion and thermal characteristics of pinewood bio-oil from slow pyrolysis", Energy 141 (2017) 2377-2386.
[111]S. S. Hou, F. M. Rizal, T. H. Lin, T. Y. Yang, H. P. Wan, "Microexplosion and ignition of droplets of fuel oil/bio-oil (derived from lauan wood) blends", Fuel 113 (2013) 31-42.
[112]H. Ghassemi, S. W. Baek, Q. S. Khan, "Experimental Study on Evaporation of Kerosene Droplets at Elevated Pressures and Temperatures", Combustion Science and Technology 178 (2006) 1669-1684.
[113]T. I. Farouk, Y. C. Liu, A. J. Savas, C. T. Avedisian, F. L. Dryer, "Sub-millimeter sized methyl butanoate droplet combustion: Microgravity experiments and detailed numerical modeling", Proceedings of the Combustion Institute 34 (2013) 1609-1616.
[114]B. Shaw, F. Dryer, F. Williams, J. Haggard Jr, "Sooting and disruption in spherically symmetrical combustion of decane droplets in air", Acta Astronautica 17 (1988) 1195-1202.
[115]C. K. Law, "Recent advances in droplet vaporization and combustion", Progress in energy and combustion science 8 (1982) 171-201.
[116]S. R. Turns, "An introduction to combustion", McGraw-hill New York (1996).
[117]C. K. Law, "Combustion physics", Cambridge university press (2010).
[118]Y. C. Liu, A. J. Savas, C. T. Avedisian, "Spherically symmetric droplet combustion of three and four component miscible mixtures as surrogates for Jet-A", Proceedings of the Combustion Institute 34 (2013) 1569-1576.
[119]M. J. Wornat, B. G. Porter, N. Y. C. Yang, "single Droplet Combustion of Biomass Pyrolysis Oils", Energy & Fuels 8 (1994) 1131-1142.
[120]J. D'Alessio, M. Lazzaro, P. Massoli, V. Moccia, "Thermo-optical investigation of burning biomass pyrolysis oil droplets", Symposium (International) on Combustion 27 (1998) 1915-1922.
[121]E. Mura, R. Calabria, V. Califano, P. Massoli, J. Bellettre, "Emulsion droplet micro-explosion: Analysis of two experimental approaches", Experimental Thermal and Fluid Science 56 (2014) 69-74.
[122]S. Okajima, H. Kanno, S. Kumagai, "Combustion of emulsified fuel droplets under microgravity", Acta astronautica 12 (1985) 555-563.
[123]J. H. Bae, C. T. Avedisian, "Experimental study of the combustion dynamics of jet fuel droplets with additives in the absence of convection", Combustion and Flame 137 (2004) 148-162.
[124]C. Morin, C. Chauveau, I. Gökalp, "Droplet vaporisation characteristics of vegetable oil derived biofuels at high temperatures", Experimental Thermal and Fluid Science 21 (2000) 41-50.
[125]M. Al Qubeissi, S. S. Sazhin, C. Crua, J. Turner, M.R. Heikal, "Modelling of biodiesel fuel droplet heating and evaporation: Effects of fuel composition", Fuel 154 (2015) 308-318.
[126]A. K. Agarwal, "Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines", Progress in Energy and Combustion Science 33 (2007) 233-271.
[127]S. Kumar, J. H. Cho, J. Park, I. Moon, "Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines", Renewable and Sustainable Energy Reviews 22 (2013) 46-72.
[128]C. Sayin, "Engine performance and exhaust gas emissions of methanol and ethanol–diesel blends", Fuel 89 (2010) 3410-3415.
[129]P. Dürre, "Biobutanol: an attractive biofuel", Biotechnology Journal: Healthcare Nutrition Technology 2 (2007) 1525-1534.
[130]X. Ma, F. Zhang, K. Han, B. Yang, G. Song, "Evaporation characteristics of acetone–butanol–ethanol and diesel blends droplets at high ambient temperatures", Fuel 160 (2015) 43-49.
[131]A. Hoxie, R. Schoo, J. Braden, "Microexplosive combustion behavior of blended soybean oil and butanol droplets", Fuel 120 (2014) 22-29.
[132]K. L. Pan, J. W. Li, C. P. Chen, C. H. Wang, "On droplet combustion of biodiesel fuel mixed with diesel/alkanes in microgravity condition", Combustion and Flame 156 (2009) 1926-1936.
[133]K. O. Lee, K. A. Jensen, M. Y. Choi, "Investigation of sooting in normal-gravity droplet combustion using light extinction and gravimetric techniques", Symposium (International) on Combustion (1996) 2397-2404.
[134]C. Panoutsos, Y. Hardalupas, A. Taylor, "Numerical evaluation of equivalence ratio measurement using OH∗ and CH∗ chemiluminescence in premixed and non-premixed methane–air flames", Combustion and Flame 156 (2009) 273-291.
[135]Y. K. Jeong, C. H. Jeon, Y. J. Chang, "Evaluation of the equivalence ratio of the reacting mixture using intensity ratio of chemiluminescence in laminar partially premixed CH4-air flames", Experimental Thermal and Fluid Science 30 (2006) 663-673.
[136]C. J. Dasch, "One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods", Applied optics 31 (1992) 1146-1152.
[137]A. J. Smits, "Flow visualization: techniques and examples", World Scientific (2012).
[138]G. Settles, "Schlieren and shadowgraph techniques: visualizing phenomena in transparent media", (2002).
[139]K. C. Smith, "The science of photobiology", Springer Science & Business Media (2013).
[140]J. J. Bravo-Suárez, P. D. Srinivasan, "Design characteristics of in situ and operando ultraviolet-visible and vibrational spectroscopic reaction cells for heterogeneous catalysis", Catalysis Reviews (2017) 1-151.
[141]X. Ren, J. Meng, A. M. Moore, J. Chang, J. Gou, S. Park, "Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils", Bioresour Technol 152 (2014) 267-274.
[142]G. K. Parshetti, Z. Liu, A. Jain, M. P. Srinivasan, R. Balasubramanian, "Hydrothermal carbonization of sewage sludge for energy production with coal", Fuel 111 (2013) 201-210.
[143]Y. Y. Zhang, L. Q. Zhao, Q. Lu, "TG-FTIR Analysis on Evaporation, Decomposition and Combustion Characteristics of Bio-Oil", Applied Mechanics and Materials 291-294 (2013) 359-363.
[144]A. Bridgwater, M. Cottam, "Opportunities for biomass pyrolysis liquids production and upgrading", Energy & Fuels 6 (1992) 113-120.
[145]R. Zhang, Z. Zhong, Y. Huang, "Combustion characteristics and kinetics of bio-oil", Frontiers of Chemical Engineering in China 3 (2009) 119-124.
[146]N. Hashimoto, H. Nomura, M. Suzuki, T. Matsumoto, H. Nishida, Y. Ozawa, "Evaporation characteristics of a palm methyl ester droplet at high ambient temperatures", Fuel 143 (2015) 202-210.
[147]Q. Liu, S. Wang, Y. Zheng, Z. Luo, K. Cen, "Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis", Journal of Analytical and Applied Pyrolysis 82 (2008) 170-177.
[148]X. Jiang, N. Ellis, Z. Zhong, "Fuel properties of bio-oil/bio-diesel mixture characterized by TG, FTIR and 1H NMR", Korean Journal of Chemical Engineering 28 (2010) 133-137.
[149]J. X. Peng, B. B. Yan, G. Y. Chen, X. L. Zhu, C. Wang, "TG-FTIR Analysis of Wood Based Bio-Oil", Advanced Materials Research (2012) 2661-2665.
[150]A. G. Abdul Jameel, Y. Han, O. Brignoli, S. Telalović, A.M. Elbaz, H.G. Im, W. L. Roberts, S. M. Sarathy, "Heavy fuel oil pyrolysis and combustion: Kinetics and evolved gases investigated by TGA-FTIR", Journal of Analytical and Applied Pyrolysis 127 (2017) 183-195.
[151]D. Chen, J. Zhou, Q. Zhang, "Effects of Torrefaction on the Pyrolysis Behavior and Bio-Oil Properties of Rice Husk by Using TG-FTIR and Py-GC/MS", Energy & Fuels 28 (2014) 5857-5863.
[152]J. X. Wang, J. P. Cao, X. Y. Zhao, T. L. Liu, F. Wei, X. Fan, Y. P. Zhao, X. Y. Wei, "Study on pine sawdust pyrolysis behavior by fast pyrolysis under inert and reductive atmospheres", Journal of Analytical and Applied Pyrolysis 125 (2017) 279-288.
[153]F. Abnisa, A. Arami-Niya, W. M. A. W. Daud, J. N. Sahu, "Characterization of Bio-oil and Bio-char from Pyrolysis of Palm Oil Wastes", BioEnergy Research 6 (2013) 830-840.
[154]C. K. Law, "Unsteady droplet combustion with droplet heating", Combustion and Flame 26 (1976) 17-22.
[155]A. Daı̈f, M. Bouaziz, X. Chesneau, A. Ali Chérif, "Comparison of multicomponent fuel droplet vaporization experiments in forced convection with the Sirignano model", Experimental Thermal and Fluid Science 18 (1998) 282-290.
[156]H. Hara, S. Kumagai, "Experimental investigation of free droplet combustion under microgravity", Symposium (International) on Combustion 23 (1991) 1605-1610.
[157]K. D. Bartle, E. M. Fitzpatrick, J. M. Jones, M. L. Kubacki, R. Plant, M. Pourkashanian, A. B. Ross, A. Williams, "The combustion of droplets of liquid fuels and biomass particles", Fuel 90 (2011) 1113-1119.
[158]M. Ghamari, A. Ratner, "Combustion characteristics of diesel and Jet-A droplets blended with polymeric additive", Fuel 178 (2016) 63-70.
[159]D. C. K. Rao, S. Syam, S. Karmakar, R. Joarder, "Experimental investigations on nucleation, bubble growth, and micro-explosion characteristics during the combustion of ethanol/Jet A-1 fuel droplets", Experimental Thermal and Fluid Science 89 (2017) 284-294.
[160]H. Wise, C. M. Ablow, "Burning of a Liquid Droplet. III. Conductive Heat Transfer within the Condensed Phase during Combustion", The Journal of Chemical Physics 27 (1957) 389-393.
[161]Y. Zhang, R. Huang, Z. Wang, S. Xu, S. Huang, Y. Ma, "Experimental study on puffing characteristics of biodiesel-butanol droplet", Fuel 191 (2017) 454-462.
[162]A. L. Randolph, C. K. Law, "Influence of physical mechanisms on soot formation and destruction in droplet burning", Combustion and Flame 64 (1986) 267-284.
[163]A.R. Karagozian, "Acoustically Coupled Combustion of Liquid Fuel Droplets", Applied Mechanics Reviews 68 (2016) 040801-040811.
[164]C. Verwey, M. Birouk, "Experimental investigation of the effect of natural convection on the evaporation characteristics of small fuel droplets at moderately elevated temperature and pressure", International Journal of Heat and Mass Transfer 118 (2018) 1046-1055.
[165]G. R. Toker, J. Stricker, "Holographic study of suspended vaporizing volatile liquid droplets in still air", International Journal of Heat and Mass Transfer 39 (1996) 3475-3482.
[166]M. T. Monaghan, R. G. Siddall, M.W. Thring, "The influence of initial diameter on the combustion of single drops of liquid fuel", Combustion and Flame 12 (1968) 45-53.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top