跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.187) 您好!臺灣時間:2025/11/22 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張耀峰
研究生(外文):Chang, Yao-Feng
論文名稱:氧空缺與相變化在氮化鈦/二氧化矽/鐵白金結構電阻式非揮發性隨機存取記憶體的影響
論文名稱(外文):The Role of Oxygen Vacancies and Phase Change in TiN/SiO2/PtFe Resistance nonvolatile Random Access Memories
指導教授:張俊彥
指導教授(外文):Chang, Chun-Yen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:87
中文關鍵詞:電阻式記憶體氧化鐵鐵白金二氧化矽氧空缺相變化
外文關鍵詞:RRAMFe2O3PtFeSiO2Oxygen vacancyPhase Change
相關次數:
  • 被引用被引用:0
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於非揮發性記憶體的應用與發展受到矚目,加上快閃記憶體微縮極限,所以新世代非揮發性記憶體的研究正緊鑼密鼓地展開。其中,電阻式非揮發性記憶元件具有高密度、高操作速度、低功率消耗、高耐久性、微縮能力高及非破壞性資料讀取等優點,使其成為新世代非揮發性記憶元件的熱門人選。
在本篇論文中,提出電阻轉換特性的物理模型與理論基礎在氮化鈦/二氧化矽/鐵白金的結構上,且與氧空缺和相變化有關。其內容可分為三大部份,包含利用結構上的不同,亦或不同熱處理的方式與小尺寸元件效應,來驗證論文中所提到的物理模型與電性特性的研究。在利用不同結構來檢視記憶體特性部份,置換不同上下電極材料與二氧化矽厚度,來檢視電阻有效轉態區的位置。其結果驗證有效轉態區位置在鐵白金底電極與二氧化矽的界面上,且和Fe元素有一定的相關性。在利用不同的熱處理方式來檢視電阻轉態特性部分,驗證了氧化鐵與氧空缺量的多寡程度亦會影響到轉態週期與電流特性。最後,製作小尺寸元件來檢視轉態特性,發現實驗結果與電性水管理論的結果相似,並且可從電性結果更加驗證物理模型的確立。最後提出電性水管的基本物理與數學模型,做為未來可能再增進的研究方向。
Recently, since nonvolatile memories acquire a lot of attention and flash memories are facing with the scale limit issue, the next generation nonvolatile memory has been carried out to discover extensively. The resistive random access memories (ReRAMs) that have the strengths of high cell density array, high operation speed, low power consumption, high endurance, lower scale limit and non-destructive readout, are one of the most potential candidate for flash memories.
In this thesis, a physical model and mechanism which is about the role of oxygen vacancies and phase change in TiN/SiO2/PtFe resistance nonvolatile random access memories is proposed. This study can be categorized into three parts, different structures, different thermal treatments and small size devices, all of these electrical results can support the model and mechanism. In the first part, replacing metal electrode materials and SiO2 thickness with different structures was found the results which the effective resistance switching region is at interface region, and Fe element plays an important role to cause resistance switching behavior. In the second part, with different thermal treatments to examine the resistance switching characteristics, was discovered that amount of Fe2O3 and oxygen vacancies would affect endurance reliability and electric characteristics. In the third part, using small size cells to examine the resistance switching characteristics was found the results which are similar with the electric faucet theory and the proposed model. Moreover, a possible model about electric faucet is proposed by physical and mathematical methods. Further investigation, including interfacial electric faucet structure and electrode effects, would help to achieve a better understanding.
CHINESE ABSTRACT I
ABSTRACT II
ACKNOWLEDGEMENT IV
CONTENTS V
TABLE CAPTIONS IX
FIGURE CAPTIONS X
CHAPTER 1 INTRODUCTION
1.1 INTRODUCTION TO NON-VOLATILE MEMORY 1
1.1.1 Flash 2
1.1.2 Resistive random access memory (ReRAM) 2
1.1.3 Structure and fabrication 3
1.1.4 Material classification 4
1.1.5 Operation and circuit realization 4
1.2 CONDUCTING MECHANISMS IN OXIDES [25] 6
1.2.1 Ohmic conduction 6
1.2.2 Space charge limited current 7
1.2.3 Schottky emission 8
1.2.4 Frenkel-Poole emission 8
1.2.5 Tunneling 9
1.3 MODELS OF RESISTIVE SWITCHING MECHANISMS 9
1.3.1 Filament-type resistive switching [23] 10
1.3.2 Interface-type resistance switching [23] 10
CHAPTER 2 EXPERIMENT DETAILS 16
2.1 MOTIVATION 16
2.2 SAMPLE FABRICATION 16
2.2.1 Standard RCA clean 17
2.2.2 Growth of buffer SiO2 18
2.2.3 Deposition of bottom electrode 18
2.2.4 Preparation of insulator SiO2 19
2.2.5 Deposition of top electrodes 19
2.2.6 Deposition of passivation oxide 20
2.2.7 Deposition of probing electrodes 20
2.3 ANALYSES AND MEASUREMENTS 20
2.3.1 Inductively coupled plasma-mass spectrometry (ICP-MS) 21
2.3.2 X-ray diffraction (XRD) 21
2.3.3 X-ray photoelectron spectrometer (XPS) 21
2.3.4 Auger electron spectroscopy (AES) 21
2.3.5 Secondary ion mass spectroscopy (SIMS) 22
2.3.6 Electrical measurements 22
2.3.6.1 Bistable resistive switching 23
2.3.6.2 Endurance 23
2.3.6.3 Retention 23
CHAPTER 3 RESULTS AND DISCUSSIONS 26
3.1 DEVICE STRUCTURES AND CHARACTERISTICS 26
3.1.1 Various bottom electrode metals 26
3.1.1.1 Mechanism of Forming Process 27
3.1.1.2 Mechanism of Phase Change in the Reset Process 28
3.1.1.3 Mechanism of Oxygen Vacancies in the Reset Process 28
3.1.1.4 Band diagram in the Reset Process 29
3.1.1.5 Mechanism of Phase Change in the Set Process 29
3.1.1.6 Mechanism of Oxygen Vacancies in the Set Process 30
3.1.1.7 Band diagram in the Set Process 31
3.1.2 Effects of Top Electrode Metal Effects 31
3.1.3 Effects of SiO2 Thicknesses 32
3.1.4 Summary I 32
3.2 EFFECTS OF BOTTOM ELECTRODE METALS 33
3.2.1 Electrical properties 33
3.2.1.1 Bistable Resistance switching 33
3.2.1.2 Current-Voltage Fitting 34
3.2.1.3 I-V Characteristics Distribution 34
3.2.2 Summary II 35
3.3 THERMAL TREATMENT EFFECTS 35
3.3.1 Electrical Characteristics 36
3.3.1.1 Bistable resistance switching and Endurance 36
3.3.2 Material analysis 37
3.3.2.1 SIMS 37
3.3.2.2 XPS 37
3.3.2.3 XRD 38
3.3.3 Comprehensive Comparison 38
3.3.3.1 Endurance Reliability 38
3.3.3.2 The Low Resistance State 39
3.3.3.3 The High Resistance State 40
3.3.4 Summary III 40
3.4 SMALL SIZE EFFECTS 41
3.4.1 Experimental 41
3.4.2 Bistable Resistance Switching 41
3.4.3 Material Analysis 42
3.4.4 Current Fitting 42
3.4.5 Size Effects 43
3.4.6 Set Process with Different Sizes 44
3.4.7 Reset Process with Different Sizes 44
3.4.8 Compliance Current and Switching Process 45
3.4.8.1 Physical Model of Electric Faucet 45
3.4.8.2 Mathematical Model of Electric Faucet 47
3.4.9 Summary 48
CHAPTER 4 CONCLUSION 83
REFERENCE 84
[1] S. Lai, “Future Trends of Nonvolatile Memory Technology,” December 2001.
[2] S. Aritome, IEEE IEDM Tech. Dig., 2000, p.738.
[3] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, 46, 1288 (1967).
[4] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview” Proc. IEEE, vol. 85, pp. 1248–1271, Aug. 1997.
[5] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti, “Introduction to Flash Memory” Proc. IEEE, vol. 91, NO.4, April 2003.
[6] I. G. Baek, D. C. Kim, M. J. Lee, H. J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung, J. T. Moon, and B. I. Ryu, “Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application,” Tech. Dig. – Int. Electron Devices Meet., 2005, pp. 750-753.
[7] Qi Liu, Weihua Guan, Shibing Long, Rui Jia, Ming Liu, and Junning Chen, “Resistive switching memory effect of ZrO2 films with Zr+ implanted,” Appl. Phys. Lett., vol. 92, p. 012117, Jan. 2008.
[8] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. –S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. –S. Kim, J. S. Chio, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, p. 5655, Dec. 2004.
[9] C. B. Lee, B. S. Kang, A. Benayad, M. J. Lee, S –E. Ahn, K. H. Kim, G. Stefanovich, Y. Park, and I. K. Yoo, “Effect of metal electrodes on the resistive memory switching property of NiO thin films,” Appl. Phys. Lett., vol. 93, p. 042115, 2008.
[10] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M. –J. Tsai, “Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM,” IEEE IEDM Tech. Dig., 2008, p.297.
[11] X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin, and T. A. Tang, “Reproducible unipolar resistance switching in stoichiometric ZrO2 films,” ive switching of TiO2/TiN nano-crystalline thin film,” Appl. Phys. Lett., vol. 90, p. 183507, 2007.
[12] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” J. Appl. Phys., vol. 98, p. 033715, Aug. 2005.
[13] Byung Joon Choi, Seol Choi, Kyung Min Kim, Yong Cheol Shin, Cheol Seong Hwang, Sung-Yeon Hwang, Sung-sil Cho, Sanghyun Park, and Suk-Kyoung Hong, “Study on the resistive switching time of TiO2 thin films,” Appl. Phys. Lett., vol. 89, p. 012906, Jul. 2006.
[14] Chih-Yang Lin, Chen-Yu Wu, Chung-Yi Wu, Tzyh-Cheang Lee, Fu-Liang Yang, Chenming Hu, and Tseung-Yuen Tseng, “Effect of top electrode material on resistive switching properties of ZrO2 film memory devices,” IEEE Electron Device Lett., vol. 28, pp. 366-368, May. 2007.
[15] D. C. Kim, S. Seo, S. E. Ahn, D. S. Suh, M. J. Lee, B. H. Park, I. K. Yoo, I. G. Baek, H. J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, “Electrical observations of filamentary conductions for the resistive memory switching in NiO films,” Appl. Phys. Lett., vol. 88, p. 202102, May. 2006.
[16] I. Emmer, “Conducting filaments and voltage-controlled negative resistance in Al-Al2O3-Au structures with amorphous dielectric,” Thin Solid Films, vol. 20, pp. 43-52, Jan. 1974.
[17] R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, and Hyunsang Hwang, “Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures,” Appl. Phys. Lett., vol. 90, p. 042107, Jan. 2007.
[18] S. Muraoka, K. Osano, Y. Kanzawa, S. Mitani, S. Fujii, K. Katayama, Y. Katoh, Z. Wei, T. Mikawa, K. Arita, Y. Kawashima, R. Azuma, K. Shimakawa, A. Odagawa, and T. Takagi, “Fast switching and long retention Fe-O ReRAM and its switching mechanism,” Tech. Dig. – Int. Electron Devices Meet., 2007, pp. 779-782.
[19] Dongsoo Lee, Dae-Kue Hwang, Man Chang, Yunik Son, Dong-jun Seong, Dooho Choi, and Hyunsan Hwang, “Resistance switching of Al doped ZnO for non volatile memory applications,” IEEE Non-Volatile Semiconductor Memory Workshop, 2006, pp. 86-87.
[20] Christina Schindler, Sarath Chandran Puthen Thermadam, Rainer Waser, and Michael N. Kozicki, “Bipolar and unipolar resistive switching in Cu-doped SiO2,” IEEE Trans. Electron Devices, vol. 54, pp. 2762-2768, Oct. 2007.
[21] I. S. PARK, K. R. KIM, S. LEE, and J. AHN, “Resistance Switching Characteristics for Nonvolatile Memory Operation of Binary Metal Oxides,” Jpn. J. Appl. Phys., Vol. 46, No. 4B (2007), pp. 2172–2174.
[22] Lee D, Seong D-j. Jo I., Xiang F, Dong R, Oh S and Hwang H., “Resistance switching of copper doped MoOx films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 90, p. 122104.
[23] Akihito Sawa, “Resistive Switching in Transition Metal oxides,” Materialstoday, Vol. 11, 2008, pp. 28-36.
[24] I. G. Baek, D. C. Kim, M. J. Lee, H. J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung, J. T. Moon, and B. I. Ryu, “Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application,” Tech. Dig. – Int. Electron Devices Meet., 2005, pp. 750-753.
[25] S. M. Sze, and Kwok K. NG, Physics of Semiconductor Device, 3rd ed., John Wiley & Sons, New Jersey, 2007.
[26] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung and I. T. Moon, “Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses,” Tech. Dig. – Int. Electron Devices Meet., 2004, pp. 587-590.
[27] Myoung-Jae Lee, Youngsoo Park, Bo-Soo Kang, Seung-Eon Ahn, Changbum Lee, Kihwan Kim, Wenxu. Xianyu, G. Stefanovich, Jun-Hyun Lee, Seok-Jae Chung, Yeon-Hee Kim, Chang-Soo Lee, Jong-Bong Park, In-Gyu Baek, and In-Kyeong Yoo, “2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications,” Tech. Dig. – Int. Electron Devices Meet., 2007, pp. 767-770.
[28] Masashi Kawasaki, Akihito Sawa, and Yoshnori Tokura, “Mechanisms of resistance switching memory effect in oxides,” Int. Conf. Solid State Devices Mater., 2006, pp. 286-287.
[29] J. E. Ralph, and J. M. Woodcock, “A new filamentary model for voltage formed amorphous oxide films,” J. Non-Cryst. Solids, vol. 7, pp. 236-250, Apr. 1972.
[30] I. Emmer, “Conducting filaments and voltage-controlled negative resistance in Al-Al2O3-Au structures with amorphous dielectric,” Thin Solid Films, vol. 20, pp. 43-52, Jan. 1974.
[31] Christina Rohde, Byung Joon Choi, Doo Seok Jeong, Seol Choi, Jin-Shi Zhao, and Cheol Seong Hwang, “Identification of a determining parameter for resistive switching TiO2 thin films,” Appl. Phys. Lett., vol. 86, p. 262907, Jun. 2005.
[32] Sawa, A., et al., Appl. Phys. Lett. (2004) 85, 4073.
[33] Fujii, T., et al., Appl. Phys. Lett. (2005) 86, 012107.
[34] Simmon, J. G. and Verderber, R. R., “New Conduction and Reversible Memory Phenomena In Thin Insulating Films.” Proc. R. Soc, Lond. A, 301, 77-102 (1967).
[35] Peter C. J. Graat, Marcel A. J. Somers, “Simultaneous determination of Composition and Thickness of Thin Iron-Oxide films from XPS Fe 2p Spectra,” Applied Surface Science, 100/101 (1996) 36-40.
[36] V. A. Sadykov et al., “Effect of Mechanical Activation on the Real Structure and Reactivity of Iron (III) Oxide with Corundum-Type Structure,” Journal of Solid State Chemistry, 123, 191-202 (1996).
[37] I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, “Nonpolar resistive switching of metal / binary – transition – metal oxides / metal sandwiches: Homogeneous/inhomogeneous transition of current distribution,” Physical Review B., 77, 035105 (2008).
[38] V. E. Hendrich and P. A. Cox, Surface Science of Metal Oxide, Cambridge University Press, Cambridge, UK, 1994.
[39] O. Knacke, O. Kubaschewski, and K. Hesselmann, Thermal-Chemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1991.
[40] V. V. Pavlov, P. A. Usachev, R. V. Pisarev, D. A. Kurdyukov, S. F. Kaplan, A. V. Kimel, A. Kirilyuk, Th. Rasing, “ Optical study of three-dimensional magnetic photonic crystals opal/Fe3O4,” Journal of Magnetism and Magnetic Materials, 840–842, 2009.
[41] H. S. Zhou, A. Mito, D. Kundu and I. Honma, “Nonlinear Optical Susceptibility of Fe2O3 Thin Film Synthesized by a Modified Sol-Gel Method,” Journal of Sol-Gel Science and Technology, vol. 19, pp. 539–541, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊