跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2026/01/03 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇益民
研究生(外文):Yi-Min SuYi-Min SuYi-Min Su
論文名稱:觀測器為基礎之H∞模糊控制-混合式田口基因模糊控制法
論文名稱(外文):Observer-based H∞ Fuzzy Control Design-Hybrid Taguchi-Genetic Fuzzy Control Approach
指導教授:方俊雄方俊雄引用關係
指導教授(外文):Chun-Hsiung Fang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:64
中文關鍵詞:T-S模糊系統線性矩陣不等式以觀測器為基礎H∞控制混合式田口基因演算法
外文關鍵詞:T-S fuzzy systemslinear matrix inequalityobserver-basedH∞ controlHybrid Taguchi Genetic Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1075
  • 評分評分:
  • 下載下載:118
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對T-S模糊系統,探討以觀測器為基礎的H∞控制問題,以Lyapunov function的精神做為推導的基礎,文獻上以觀測器為基礎的 控制問題會遇到非線性矩陣不等式,必須藉由二步驟的求解程序,才能藉由線性矩陣不等式之技術求解,導致解集合過於保守,本論文提出了藉由混合式田口基因演算法,搜尋最佳化的控制器增益以及觀測器增益,將待求的控制器增益以及觀測器增益,假設成非變數,且數值落在以知區間內,使非線性矩陣不等式轉換成線性矩陣不等式,避免二步驟求解的缺點,不僅化簡推導的繁瑣,也降低了觀測器輸出
回授H∞控制器設計條件之保守度。
This thesis deals with observer-based H∞ control problem for T-S fuzzy systems .
By using Lyapunov stability analysis as the basis for derivation. literature on the observer-based control issue will encounter nonlinear matrix inequalities, must be solved by two-step procedure, lead to the solution set is too conservative. In this thesis, by using hybrid Taguchi genetic algorithm to search optimization controller gain and observer gain, the unknown controller gain and observer gain is assumed as nonvariable, the nonlinear matrix inequalities into linear matrix inequalities, avoid the shortcomings of two-step procedure.
目錄
摘 要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VI
符 號 說 明 VII
一、緒論 1
1-1文獻回顧與研究動機 1
1-2田口基因演算法簡介 2
1-2-1基因演算法 2
1-2-1-1初始染色體的產生 2
1-2-1-2選擇與複製 3
1-2-1-3交配 4
1-2-2田口實驗法 5
1-2-2-1直交表 7
1-3-2-2訊號雜訊比(S/N) 9
1-3-3田口基因法 9
1-3論文章節與安排 11
二、問題描述與所需的引理 12
2-1 問題描述 12
2-2 所需的引理 13
三、以觀測器為基礎之H∞控制器設計 14
(觀測器含有系統雜訊項) 14
3-1 問題描述及文獻回顧 14
3-2 基於田口基因法的H∞模糊控制條件之建立 17
3-3 數值模擬 22
四、以觀測器為基礎之H∞控制器設計 31
(觀測器不含系統雜訊項) 31
4-1 問題描述及文獻回顧 31
4-2基於田口基因法的H∞模糊控制條件之建立 32
4-3 數值模擬 37
五、以觀測器為基礎之H∞控制器設計 45
(系統含不確定量且觀測器不含系統雜訊項) 45
5-1 問題描述與文回顧 45
5-2基於田口基因法的強健H∞模糊控制條件之建立 48
5-3 數值模擬 54
六、結論 56
參考文獻 57















圖目錄
圖1.1 輪盤選擇 4
圖1.2 田口實驗設計法參數設計圖 6
圖1.3 混合式田口基因演算法流程圖一 10
圖1.4 混合式田口基因演算法流程圖二 11
圖3.1 範例3.1的誤差響應圖 23
圖3.2 範例3.1的受控輸出訊號Z(T)之響應及干擾訊號W(T)響應圖 24
圖3.3 範例3.2的誤差響應圖 27
圖3.4範例3.2的受控輸出訊號Z(T)之響應及干擾訊號W(T)響應圖 28
圖3.5範例3.3的受控輸出訊號Z(T)之響應響應圖 30
圖4.1 範例4.1的狀態響應圖 38
圖4.2 範例4.1的誤差響應圖 39
圖4.3 範例4.1的受控輸出訊號Z(T)之響應及干擾訊號W(T)響應圖 40
圖4.4 範例4.2的狀態響應圖 42
圖4.5 範例4.2的誤差響應圖 43
圖4.6 範例4.2的受控輸出訊號Z(T)之響應及干擾訊號W(T)響應圖 44
圖5.1 範例5.1的狀態、誤差、受控輸出訊號Z(T)之響應及干擾訊號W(T)響應圖 55
參考文獻

[1] A. A. adewuya, “New methods in genetic search with real-valued chromosomes,” Master Thesis. Department of Mechanical Engineering, Massachuetts Institute of Technology, 1996.

[2]S. Agarwal and P. Agarwal, “A Fuzzy Logic Approach to Search Results’ Personalization by Tracking User’s Web Navigation Pattern and Psychology,” Digital Object Identifier 10.1109/ICTAI.2005.10 14-16 pp. 318-325, Nov. 2005

[3]S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, SIAM Press, Philadelphia, 1994.

[4] J. H. Chou, W. H. Liao, and J. J. Li, “Application of Teaguchi-Genetic Method to Design Optimal Grey-Fuzzy Controller of a Constant Turning Force Systm,” Proc. of the 15th CSME Annual Conference, Taiwan, pp. 31-38, 1998.

[5]Y.-Y. Cao and P. M. Frank, “Robust H∞ disturbance attenuation for a class of uncertain discrete-time fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 4, pp. 406-415, 2000.

[6]Shouyu Chen and Qingguo Li, “An areal rainfall forecasting method based on fuzzy optimum neural network and Geography Information System,” Digital Object Identifier 10.1109/WCICA.2004.1343750, vol. 6, 15-19 Jun. 2004

[7]B.-S. Chen, C.-S. Tseng, and H.-J. Uang, “Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach,” IEEE Trans. Fuzzy Systems, vol. 8, no. 3, pp. 249-265, Jun. 2000.

[8]G. Corani and G. Guariso, “Coupling fuzzy modeling and neural networks for river flood prediction,” Digital Object Identifier 10.1109/TSMCC.2004.843229, vol. 35, Issue 3, pp. 382-390, Aug. 2005

[9]B.-C. Ding, H.-X. Sun, and Peng Yang, “Further studies on LMI-based stabilization conditions for nonlinear systems in Takagi-Sugeno’s form,” Automatica, vol. 42, no. 4, pp. 503-508, 2006.

[10] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, pp.151-159, 1989.

[11] L. EI Ghaoui, R. Nikoukhah, and F. Delebecque, “LMITOOL: a package for LMI optimization”, Proc. of 34th CDC, pp. 3096-3101, 1994. (check website http://www-rocq.inria.fr/scilab/ for the package LMITOOL)

[12] M. Gen, R. Cheng, Genetic Algorithms and Engineering Design, John Wiley and Sons, New York, 1997.

[13]Chun-Hsiung Fang, Yung-Sheng Liu, Shih-Wei Kau, Lin Hong, and Ching-Hsiang Lee, “A New LMI-Based Approach to Relaxed Quadratic Stabilization of T–S Fuzzy Control Systems,” IEEE Trans. Fuzzy Syst., vol. 14, No. 3, pp. 386-397, Jun. 2006.

[14]P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox User’s Guide, Natick, MA: Math Works, 1995.
[15]C. F. Juang and C T. Lin, “An on-line self-constructing neural fuzzy inference network and its application,” IEEE Trans. Fuzzy Systems, pp. 12-32, Jun. 2006.

[16] A. Fazelpour and B. Howarth, “A fuzzy management information base (FMIB) network management,” Digital Object Identifier10.1109/WESCON.1994.403574, pp. 342-347, Sep. 1994.

[17]R. L. Kap, T. J. Eun and B. Park, “Robust fuzzy H∞ control for uncertain nonlinear systems via state feedback: an LMI approach,” Fuzzy sets and System, vol. 120, no. 1, pp. 123-134, May, 2001.

[18] L. Koskinen and J. Astola, “Soft Morphological Filters: A Robust Morphological Filtering Method,” Journal of ElectronicI Imaging, vol. 3, pp. 60-70, 1994.

[19]E. Kim and H. Lee, “New approaches to relaxed quadratic stability condition of fuzzy control systems,” IEEE Trans. Fuzzy Systems, vol. 8, no. 5, pp. 523-534, Oct. 2000.

[20]Ji-Chang Lo and Min-Long Lin, “Observer-Based Robust Control for Fuzzy Systems Using Two-step Procedure,” IEEE Trans. Fuzzy Systems, vol. 12, no. 3, Jun. 2004.

[21] K.-R. Lee, E.-T. Jeung, and H.-B. Park, “Robust fuzzy H∞ control for uncertain nonlinear systems via state feedback: an LMI approach,” Fuzzy Sets and Systems, vol. 120, no. 1, pp. 123-134, May. 2001.

[22]Chong Lin, Qing-Guo Wang and Tong Heng Lee, “Improvement on observer-based control for T-S fuzzy systems,” Automatica, vol. 41, pp. 1651-1656, July. 2005.

[23]P. X. Liu and M.Q.H. Meng, “Online data-driven fuzzy clustering with applications to real-time robotic tracking,” IEEE Trans. Fuzzy Systems, vol. 12, pp. 516-523, Aug. 2004.

[24]X. Liu and Q. Zhang, “New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica, vol. 39, no. 9, pp. 1571-1582, Sep. 2003.

[25]G. Matheron, Random Sets and Integral Geometry, Wiley, New York, 1975.

[26] I. Ono, S. Kobayashi, K. Yoshida, “Optimal lens design by real-coded genetic algorithms using UNDX,” Computer Methods in Applied Mechanics and Engineering, 186 (2-4), pp. 483-497, 2000.

[27] I. Ono, S. Koboyashi, and K. Yoshida, “Global and multi-objective optimization for lens design by real-coded genetic algorithms,” in Proceedings of International Optical Design Conference 1998, vol. 3482 of SPIE, 1998.

[28] I. Ono, S. Kobayashi, “A real-coded genetic algorithm for function optimization using unimodal normal distribution crossover,” Proceedings of the Seventh International Conference on Genetic Algorithms, pp. 246-253, 1997.

[29] M. S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, New Jersey, 1989.

[30] S. H. Park, Robust Design and Analysis for Quality Engineering, Chapman & Hall, London, 1996.

[31] P. J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill, Singapore, 1996.

[32]K. Tanaka, T. Ikeda, and H. O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, H∞ control theory, and linear matrix inequalities,” IEEE Trans. Fuzzy Systems, vol. 4, no. 1, pp. 1-13, Feb. 1996.

[33]K. Tanaka, T. Ikeda, and H. O. Wang, “Design of Fuzzy Control Systems Based on Relaxed LMI Stability Conditions,” 35th IEEE Conference on Decision and Control, Kobe, vol. 1, pp. 598-603, 1996.

[34]K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy Regulators and Fuzzy Observers: A Linear Matrix Inequality Approach,” 36th IEEE Conference on Decision and Control, vol. 2, pp. 1315-1320, 1997.

[35]K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Trans. Fuzzy Systems, vol. 6, no. 2, pp. 250-265, May. 1998.

[36]T. Takagi and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. 15, pp. 116-132, Jan. 1985.

[37]K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, John Wiley & Sons Inc. New York, 2001.

[38] H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, “ Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design” ” IEEE Trans. Fuzzy Systems, Vol. 9, NO. 2, APRIL 2001.

[39] J. T. Tsai, T. K. Liu, and J. H. Chou, “ Hybrid Taguchi-genetic algorithm for global numerical optimization,” IEEE Transactions on Evolutionary Computation, Vol.8, No.4, pp. 365-377, August 2004.

[40] H.-N. Wu and K.-Y. Cai, “H2 guaranteed cost fuzzy control for uncertain nonlinear systems via linear matrix inequalities,” Fuzzy Sets and Systems, vol. 148, no. 1, pp. 411-429, 2004.
[41] L. X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall, Englewood Cliffs, NJ. 1997.
[42] Y. Wu, Taguchi Methods for Robust Design, The American Society of Mechanical Engineers, New York, 2000.

[43] L. Xie, “Output feedbackH control of systems with parameter uncertainties,”
Int. J. Contr., vol. 63, no. 4, pp. 741–750, 1996.

[44]Z.-H. Xiu and G. Ren, “Stability analysis and systematic design of Takagi-Sugeno fuzzy control systems,” Fuzzy Sets and Systems, vol. 151, pp.119-138, 2005.

[45]L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision process,” IEEE Trans. Syst., Man, Cybern., vol. 3, no. 1, pp. 28-44, 1973.

[46]L. A. Zadeh, “Fuzzy set,” Information and Control, vol. 8, pp. 338-353, 1965.

[47]L. A. Zadeh, Fuzzy Sets and Applications, Wiley, New York, 1987.

[48] L. A. Zadeh, “Fuzzy algorithms,” Information and Control, vol. 12, no. 2 , pp.
94-102, 1968.

[49] 大英簡明百科http://edu1.wordpedia.com/EB_concise/default.asp.

[50] 陳明佑,2002 年,“利用模糊目標規劃法求解田口式多品質特性最佳化問
題”,國立成功大學。

[51]陳瑞彬,蔡瑞鴻,黃鼎名,2005 年,“應用田口方法於光機結構最佳化設
計”,中國機械工程學會第二十二屆全國學術研討會論文集。

[52]陳宏瑋,2007年,觀測器為基礎之H∞模糊控制,國立高雄應用科技大學,碩士論文。

[53] 許舜淵,2010年,質子交換膜燃料電池輸出電壓控制-混合式田口基因模
糊控制法,國立高雄應用科技大學,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊