跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃冠霖
研究生(外文):Kuan-Lin Huang
論文名稱:無基板支撐氮化銦鎵薄膜之光電性質分析
論文名稱(外文):Optoelectronic Properties of Free-Standing InGaN Membranes
指導教授:林佳鋒林佳鋒引用關係
口試委員:紀國鐘薛富盛陳思翰
口試日期:2015-06-03
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:57
中文關鍵詞:氮化鎵剝離奈米薄膜電化學濕式蝕刻剝離可撓式彎曲雷射切割
外文關鍵詞:GaNLift offElectrochemical etchingNanomembraneElectrochemical etchingExfoliationThreading dislocationLaser cuttingBending
相關次數:
  • 被引用被引用:1
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文在300 nm發光二極體元件下埋入一層犧牲層後並在晶圓上成長ITO/Ti/Au薄膜保護奈米薄膜在電化學濕式蝕刻後發光二極體不受到垂直式蝕刻外,並大幅提升蝕刻速度高達250 μm/min並從基板剝離。電化學濕式蝕刻過程中受到Ti/Au保護層的機械應力將(101 ̅1 ̅)六角錐柱體斷裂在表面形成六角錐結構並提升側蝕速率,剝離後的試片除了六角錐外的表面粗糙度相當平整,2×2〖 μm〗^2面積下其Rms為1.76 nm而剝離後的基板的Rms在2 nm以下。剝離後NM-LED彎曲方向朝下,MQW受到上下晶格擠壓造成NM-LED量子井能帶較標準片更加的傾斜PL波長較標準片(ST-LED)紅移了約1 nm,而NM-LED退火600℃15分鐘造成NM-LED彎曲方向朝下MQW受到上下晶格的拉伸PL波長較標準片(ST-LED)藍移了約2 nm。除此之外,在平面拉伸過程中波長隨著體積的改變呈現藍移的現象。ST-LED和NM-LED在0.5 mA電流下電激發光譜峰值458.4 nm較ST-LED波長454.72 nm紅移了約3.75 nm。
In this thesis, sacrificial layer is embedded under the 300 nm-thick light emitting diode device with top ITO/Ti/Au thin film deposited on the wafer to protect device. After the electrochemical wet etching, nano-membrane LED are not subject to vertical etching and dramatically increased the lateral etching rate to 250 μm/min. In electrochemical wet etching process, the mechanical stress of ITO/Ti/Au protective layer not only crack the (101 ̅1 ̅) hexagonal pyramid structure but also enhanced the lateral etching rate. In addition to the hexagonal pyramid structure, the surface roughness quite flat (Rms under 2 nm). NM-LED is bending downward direction after lift off. Because MQW is squeezed by lateral lattice, the NM-LED quantum well band is more inclined than ST-LED. The NM-LED PL wavelength is redshift about 1 nm compared with ST-LED. After annealing 600℃ 15 minutes, NM-LED bent downward causing MQW stretched by vertical lattice structure. The PL wavelength of NM-LED blueshift about 2 nm compared with ST-LED. In plane strain extension, PL wavelength is blueshift by changing the amount of deformation. EL of the NM-LED under driving current 0.5 mA, the wavelength redshift about 3.75 nm compared with ST-LED.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
第一章 序論 1
1-1照明技術的演進 1
1-2半導體發光二極體簡介 3
1-3發光二極體原理 4
1-4壓應力 6
1-5壓電效應( Piezoelectric Field ) 8
第二章 文獻回顧 10
2-1氮化鎵奈米薄膜文獻回顧 10
2-2研究動機 19
第三章 實驗步驟與方法 20
3-1 實驗設計與流程 20
3-2 試片製備流程 20
3-3 雷射處理裝置系統 24
3-4 電化學濕式蝕刻裝置 25
3-5 光學顯微鏡(Optical Microscope, OM) 26
3-6 冷場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 26
3-7 電激螢光光譜(Electroluminescence, EL) 27
3-8 光激螢光光譜(Photoluminescence, PL) 28
3-9 原子力顯微鏡 (Atomic Force Microscope, AFM) 29
第四章 實驗結果與討論 30
4-1 氮化鎵奈米薄膜剝離 30
4-2 NM-LED氮化鎵奈米薄膜表面形貌分析 30
4-3 NM-LED之場發掃描式電子顯微鏡(FE-SEM)形貌分析 36
4-4 原子力顯微鏡表面形貌分析 39
4-5 NM-LED薄膜厚度量測 41
4-6 NM-LED應力效應 43
4-7 NM-LED之電激發光光譜量測 50
第五章 結論 53
參考文獻 54
[1]H. J. Round, "A note on carborundum," Electrical world, vol. 49, p. 309, 1907.
[2]S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures," Japanese Journal of Applied Physics, 1995.
[3]郭浩中 and 郭守義, LED 原理與應用第二版: 五南文化事業, 2012.
[4]E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes: Wiley Online Library, 2005.
[5]S. Nakamura, S. Pearton, and G. Fasol, The blue laser diode: the complete story: Springer Science & Business Media, 2000.
[6]C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics vol. 8: Wiley New York, 1976.
[7]F. Bernardini and V. Fiorentini, "Macroscopic polarization and band offsets at nitride heterojunctions," Physical Review B, vol. 57, p. R9427, 1998.
[8]Q. Dai, M. F. Schubert, M.-H. Kim, J. K. Kim, E. Schubert, D. D. Koleske, et al., "Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities," Applied Physics Letters, vol. 94, p. 111109, 2009.
[9]U. Ben-Ami, R. Nagar, N. Ben-Ami, J. Scheuer, M. Orenstein, G. Eisenstein, et al., "Near-field scanning optical microscopy studies of V-grooved quantum wire lasers," Applied physics letters, vol. 73, pp. 1619-1621, 1998.
[10]L. Dai, B. Zhang, J. Lin, and H. Jiang, "Comparison of optical transitions in InGaN quantum well structures and microdisks," Journal of Applied Physics, vol. 89, pp. 4951-4954, 2001.
[11]M. Voncken, J. Schermer, G. Maduro, G. Bauhuis, P. Mulder, and P. Larsen, "Influence of radius of curvature on the lateral etch rate of the weight induced epitaxial lift-off process," Materials Science and Engineering: B, vol. 95, pp. 242-248, 2002.
[12]J.-S. Ha, S. Lee, H.-J. Lee, H.-J. Lee, S. Lee, H. Goto, et al., "The fabrication of vertical light-emitting diodes using chemical lift-off process," Photonics Technology Letters, IEEE, vol. 20, pp. 175-177, 2008.
[13]J. Park, K. M. Song, S.-R. Jeon, J. H. Baek, and S.-W. Ryu, "Doping selective lateral electrochemical etching of GaN for chemical lift-off," Applied Physics Letters, vol. 94, p. 221907, 2009.
[14]I. S. Chun, A. Challa, B. Derickson, K. J. Hsia, and X. Li, "Geometry effect on the strain-induced self-rolling of semiconductor membranes," Nano Lett, vol. 10, pp. 3927-32, Oct 13 2010.
[15]C. W. Cheng, K. T. Shiu, N. Li, S. J. Han, L. Shi, and D. K. Sadana, "Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics," Nat Commun, vol. 4, p. 1577, 2013.
[16]M. Voncken, J. Schermer, A. Van Niftrik, G. Bauhuis, P. Mulder, P. Larsen, et al., "Etching AlAs with HF for epitaxial lift-off applications," Journal of the Electrochemical Society, vol. 151, pp. G347-G352, 2004.
[17]J. Schermer, P. Mulder, G. Bauhuis, M. Voncken, J. Van Deelen, E. Haverkamp, et al., "Epitaxial Lift‐Off for large area thin film III/V devices," physica status solidi (a), vol. 202, pp. 501-508, 2005.
[18]A. Van Niftrik, J. Schermer, G. Bauhuis, P. Mulder, P. Larsen, and J. Kelly, "A diffusion and reaction related model of the epitaxial lift-off process," Journal of The Electrochemical Society, vol. 154, pp. D629-D635, 2007.
[19]J. Schermer, G. Bauhuis, P. Mulder, W. Meulemeesters, E. Haverkamp, M. Voncken, et al., "High rate epitaxial lift-off of InGaP films from GaAs substrates," Applied Physics Letters, vol. 76, pp. 2131-2133, 2000.
[20]C.-W. Cheng, K.-T. Shiu, N. Li, S.-J. Han, L. Shi, and D. K. Sadana, "Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics," Nature communications, vol. 4, p. 1577, 2013.
[21]L. W. Jang, D. W. Jeon, T. H. Chung, A. Y. Polyakov, H. S. Cho, J. H. Yun, et al., "Facile fabrication of free-standing light emitting diode by combination of wet chemical etchings," ACS Appl Mater Interfaces, vol. 6, pp. 985-9, Jan 22 2014.
[22]R. T. ElAfandy, M. A. Majid, T. K. Ng, L. Zhao, D. Cha, and B. S. Ooi, "Exfoliation of Threading Dislocation-Free, Single-Crystalline, Ultrathin Gallium Nitride Nanomembranes," Advanced Functional Materials, vol. 24, pp. 2305-2311, 2014.
[23]S. H. Park, G. Yuan, D. Chen, K. Xiong, J. Song, B. Leung, et al., "Wide bandgap III-nitride nanomembranes for optoelectronic applications," Nano Lett, vol. 14, pp. 4293-4298, Aug 13 2014.
[24]A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, "The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer," Journal of crystal growth, vol. 128, pp. 391-396, 1993.
[25]H. Amano, I. Akasaki, K. Hiramatsu, N. Koide, and N. Sawaki, "Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate," Thin Solid Films, vol. 163, pp. 415-420, 1988.
[26]L. Zhang, K. Cheng, S. Degroote, M. Leys, M. Germain, and G. Borghs, "Strain effects in GaN epilayers grown on different substrates by metal organic vapor phase epitaxy," Journal of Applied Physics, vol. 108, p. 073522, 2010.
[27]E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik, and E. Ozbay, "Buffer optimization for crack-free GaN epitaxial layers grown on Si (1 1 1) substrate by MOCVD," Journal of Physics D: Applied Physics, vol. 41, p. 155317, 2008.
[28]L. Xu, S. R. Gutbrod, A. P. Bonifas, Y. Su, M. S. Sulkin, N. Lu, et al., "3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium," Nat Commun, vol. 5, p. 3329, 2014.
[29]J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, et al., "GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies," Nature, vol. 465, pp. 329-333, 2010.
[30]J. Chun, Y. Hwang, Y.-S. Choi, J.-J. Kim, T. Jeong, J. H. Baek, et al., "Laser lift-off transfer printing of patterned GaN light-emitting diodes from sapphire to flexible substrates using a Cr/Au laser blocking layer," Scripta Materialia, vol. 77, pp. 13-16, 2014.
[31]M. Konagai, M. Sugimoto, and K. Takahashi, "High efficiency GaAs thin film solar cells by peeled film technology," Journal of crystal growth, vol. 45, pp. 277-280, 1978.
[32]Y. Sermon Wu, J.-H. Cheng, W. C. Peng, and H. Ouyang, "Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes," Applied physics letters, vol. 90, pp. 251110-251110-3, 2007.
[33]C.-F. Chu, F.-I. Lai, J.-T. Chu, C.-C. Yu, C.-F. Lin, H.-C. Kuo, et al., "Study of GaN light-emitting diodes fabricated by laser lift-off technique," Journal of Applied Physics, vol. 95, pp. 3916-3922, 2004.
[34]M. Doan, S. Kim, J. Lee, H. Lim, F. Rotermund, and K. Kim, "Influence of laser lift-off on optical and structural properties of InGaN/GaN vertical blue light emitting diodes," AIP Advances, vol. 2, p. 022122, 2012.
[35]J. Seo, C. Oh, H. Jeong, J. Yang, K. Lim, C. Yoon, et al., "Bias-assisted photoelectrochemical oxidation of n-GaN in H 2 O," Applied physics letters, vol. 81, pp. 1029-1031, 2002.
[36]J. J. S. M.M.A.J. Voncken *, G. Maduro, G.J. Bauhuis, P. Mulder, P.K. Larsen, "Influence of radius of curvature on the lateral etch rate of the weight induced epitaxial lift-off process."
[37]N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, "Scattering of electrons at threading dislocations in GaN," Journal of Applied Physics, vol. 83, pp. 3656-3659, 1998.
[38]H. M. Ng, N. G. Weimann, and A. Chowdhury, "GaN nanotip pyramids formed by anisotropic etching," Journal of applied physics, vol. 94, pp. 650-653, 2003.
[39]M. Birkholz, Thin film analysis by X-ray scattering: John Wiley & Sons, 2006.
[40]Y. Hu, Y. Zhang, L. Lin, Y. Ding, G. Zhu, and Z. L. Wang, "Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films," Nano Lett, vol. 12, pp. 3851-3856, Jul 11 2012.
[41]B. Ryu, W. Z. Tawfik, S.-J. Bae, J. S. Ha, S.-W. Ryu, H. S. Choi, et al., "Uni-axial external stress effect on green InGaN/GaN multi-quantum-well light-emitting diodes," Journal of Physics D: Applied Physics, vol. 46, p. 435103, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊