跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋鎮宇
論文名稱:台灣地區大氣氣膠特性之研究---高雄及台北都會區氣膠特性與散光係數
指導教授:李崇德李崇德引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:152
中文關鍵詞:氣膠散光係數氣膠粒徑分布氣膠化學組成加強因子法沙塵暴
外文關鍵詞:aerosolscattering coefficientaerosol size distributionaerosol chemical compositionenhancement factoryellow dust
相關次數:
  • 被引用被引用:31
  • 點閱點閱:725
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:2
氣膠對太陽輻射同時具有散射或吸收的能力,因而造成有效日照時數的縮短,對於農作物生長、視程的衰竭以及人們生活作息造成極重大的威脅,因此,對全球氣候變遷有重大的影響。本研究於民國88年12月至89年1月在高雄及89年春季3月到5月於台北進行氣膠採樣,量測氣膠散光係數、氣膠粒徑分布、粒徑小於2.5m的氣膠質量濃度及細粒徑氣膠物種組成。在台北採樣時並以MOUDI採集分階粒徑氣膠,以供進一步分析氣膠的化學組成。同時,更測定採樣地點的風向、風速、相對溼度等氣象資料,期能有助解釋環境對氣膠散光係數和化學成份的影響。
研究結果顯示高雄地區氣膠的綠光散光係數日平均值範圍介於0.122~0.564km-1之間,平均值為0.321km-1,氣膠散光係數主要來自於北方的污染源。在兩小時採樣區間下,細粒徑氣膠質量濃度範圍介於160.8~25.4g/m3,對照環保署小港測站PM10數值後,得到PM2.5/PM10的平均值為0.62,所量測的氣膠質量濃度與散光係數有良好的相關性(r=0.78)。
相對地,台北都會區綠光散光係數日平均值範圍介於0.032~0.484km-1之間,平均值為0.181 km-1。在沙塵暴期間,超微米氣膠對散光係數的貢獻量由平時的26%提升為47%,其含塵氣膠尖峰粒徑為2m。由MOUDI分粒徑化學採樣分析的結果,顯示台北地區細粒氣膠組成以SO42-、TC和 NH4+為主,粗粒徑氣膠主要成份則為NO3-、Si及海鹽離子。
Atmospheric aerosols reduce effective sunlight received by the Earth through scattering and absorbing solar radiation. This results in a threat to agricultural growth, visibility degradation, and human activity; which exerts a dramatic effect on global climate change. This study measures PM2.5, light-scattering coefficient (sp), size spectra, and chemical compositions of atmospheric aerosols in Kaohsiung and Taipei areas from December in 1999 to January in 2000 and from March to May in 2000, respectively. In addition, size-resolved aerosols are collected using MOUDI samplers and analyzed for their chemical contents in Taipei study. Meanwhile, wind direction, wind speed, and relative humidity are collected simultaneously for analyzing the effects of environment on aerosol optical property and chemical compositions.
The results show daily averages of the smallest 5-min sp from green wavelength in Kaohsiung ranging from 0.122 to 0.564km-1, with an average of 0.321km-1. The 2-hr intervals of PM2.5 collected in this study are in the range from 160.8 to 25.4g/m3. By taking PM10 values from a nearby EPA air quality monitoring station, a ratio of PM2.5/PM10 at 0.62 is obtained. The measured sp is correlated well (r=0.78) with the collected aerosol mass.
In contrast, the daily averages of the 5-min sp in Taipei range from 0.032 to 0.484km-1 with the average at 0.181 km-1. During the landing of yellow storm, the contribution from supermicron aerosols to sp increases from 26% to 47%. The modal diameter of the supermicron particles is at 2m. The size-fractionated chemical contents from MOUDI reveals SO42-, NH4+, and TC are dominant in the fine mode, while NO3-, Si, and sea-salts are major compositions in the coarse mode.
第一章 前言1
1.1研究動機1
1.2研究目的2
1.3預期目標3
第二章 文獻回顧4
2.1細粒徑氣膠的成因、來源及危害性4
2.1.1細粒徑氣膠的成因4
2.1.2大氣氣膠的組成8
2.1.3細粒徑氣膠的危害10
2.2大氣氣膠對視程衰竭與光學係數的關係12
2.2.1視程的定義12
2.2.2視程衰竭的探討13
2.2.3氣膠光學係數與氣膠粒徑的關係15
2.2.4氣膠光學係數與氣膠質量濃度的關係8
2.2.5氣膠散光係數與氣膠化學組成的關係12
2.2.6氣象因子的影響22
第三章 研究方法及步驟28
3.1採樣地點及時間29
3.2採樣及量測方法34
3.2.1氣膠粒徑分布34
3.2.2氣膠微粒的散光係數35
3.2.3氣象因子的量測39
3.2.4氣膠化學成份採樣(高雄採樣)39
3.2.5氣膠化學成份採樣(臺北採樣)42
3.2.6濾紙前處理43
3.3採樣標準操作程序44
3.3.1氣象塔44
3.3.2金屬元素、水溶性離子及碳元素的採樣44
3.3.3樣品保存方法、時間45
3.4樣品分析方法46
3.4.1氣膠粒徑分布46
3.4.2氣膠的散光係數46
3.4.3氣膠微粒散光係數的簡易模式46
3.4.4濾紙秤重47
3.4.5水溶性離子分析方法48
3.4.6含碳量的分析方法49
3.4.7金屬元素的分析方法51
3.4.8污染來源推估方法52
3.4.9氣膠微粒對散光係數的多元複迴歸分析53
第四章 結果與討論54
4.1高雄小港採樣結果55
4.1.1氣膠綠光散光係數、數目濃度、體積濃度採樣結果55
4.2高雄小港氣象資料59
4.2.1基本氣象資料59
4.2.2風向與散光係數63
4.2.3風向與氣膠體積濃度64
4.2.4風向與風速的分布64
4.2.5影響小港地區散光係數主要的天氣型態66
4.3理論散光係數與實測散光係數的比較67
4.4影響小港地區散光係數主要的天氣型態氣膠粒徑分布69
4.5短期化學採樣PM2.5細粒氣膠的化學組成79
4.5.1氣膠質量濃度79
4.5.2氣膠水溶性離子平均質量濃度84
4.5.3氣膠的總碳量質量濃度88
4.5.4氣膠金屬元素質量濃度90
4.5.5氣膠化學組成百分比91
4.5.6化學組成陰陽離子間的平衡92
4.6化學物種質量濃度與散光係數間的探討94
4.6.1氣膠散光係數與氣膠質量及化學組成相關性分析94
4.6.2氣膠質量濃度推估散光係數96
4.6.3氣膠散光係數與化學組成多元線性迴歸分析97
4.7以加強因子法推估小港細粒氣膠污染源99
4.8臺北都會區採樣結果及數據107
4.8.1氣膠綠光散光係數、數目濃度、體積濃度採樣結果107
4.9臺北都會區氣象資料110
4.9.1基本氣象資料110
4.10.1理論散光係數與實測散光係數的比較114
4.10.2臺北採樣期間大氣氣膠粒徑分布型態115
4.11沙塵暴對臺北地區影響的探討117
4.11.1沙塵暴的成因117
4.11.2沙塵暴對臺北都會區大氣氣膠分布的影響119
4.11.3沙塵暴期間氣膠粒徑散光係數逐時分布124
4.12臺北氣膠化學組成採樣133
4.12.1氣膠化學組成資料133
4.12.2化學組成陰陽離子間的平衡137
4.12.3臺北採樣期間不同粒徑氣膠化學物種百分比138
4.12.4氣膠物種組成粒徑分布的比較143
第五章 結論146
參考文獻148
黃明雄,1998, 台灣地區大氣氣膠特性之研究-墾丁氣膠組成及濃度對大氣能見度之影響, 國立中央大學環境工程研究所碩士論文.
林立偉,1999, 墾丁地區氣膠粒徑分布與氣象因子對散光係數影響之研究, 國立中央大學環境工程研究所碩士論文.
謝佩憶,1999, 台灣地區大氣氣膠特性之研究-墾丁氣膠化學組成與含水率對散光係數的影響及氣膠污染來源推估, 國立中央大學環境工程研究所碩士論文.
袁中新, 洪崇軒, 王宏恩, 劉山豪, 1999, 南台灣地區懸浮微粒物化特徵及生成機制探討, 1999年氣膠科技國際研討會, 台北.
Appel B. R., Tokiwa Y., Hsu J., Kothny E. L. and Hahn E., 1985, Visibility as Related to Atmospheric Aerosol Constituents. Atmos. Environ, Vol.19, 1525-1534.
Baik N. J., Kim Y. P. and Moon K. C., 1996, Visibility Study in Seoul, 1993, Atmos. Environ., Vol.30, 2319-2328.
Bergsttrom R. W., 1973, Extinction and Absorption Coefficients of the Atmospheric Aerosol as a Function of Particle Size, Beiz. Phys. Atm., Vol.45, 223-234.
Brink H. M., Veefkind J. P., Ijpellan W. and Hage J. C., 1996, Aerosol Light-Scattering in the Netherlands, Atmos. Environ, Vol.24, 4251-4261.
Buerki J. R., 1989, Size-resoled Trace Metal Characterization of Aerosols Emitted by Four Important Source Type in Switzer-Land, Atmos. Environ., Vol.23, 1659-1668l.
Casimiro A. P., Luis M., Castro A., Mario A. C., Isabek M. S., Filipa B. and Maris L. S., 1996, Source Assessment fo Particulate Air Pollutants Measured at the Southwest European Coast, Atmos. Environ., Vol30, 3309-3320.
Cass G. R., 1979, On the Relationship Between Sulfate air Quality and Visibility with examples in Los Angeles, Atmos. Environ., Vol13, 1069-1084.
Chan Y. C., Simpson R. W. and Vowles P. D., 1997, Characterisation of chemical species in PM2.5 and PM10 Aerosol in Brisbane, Australia, Atmospheric Environment., Vol.31, 3773-3785.
Charlson R. J., Schwartz S. E., Hales J. M., Cess R. D., Coakley Jr. J. A., Hansen J. E. and Hofmann D. J., 1992, Climate Forcing by Anthropogenic Aerosols, Science, Vol. 255, 423-430.
Daubay T. G. and Clubb K. W., 1981, Comparison of Telephotometer Measurements of Extinction Coefficient with Scattering and Absorption Coefficients, Atmos. Environ., 15A, 2617-2624.
Dick W. D., 1998, Multiangle light scattering techniques for measurint shape and refractive index of submicron atmospheric particles, Ph. D. Thesis, Department of Mechanical Engineering, Minneapolis, MN, University of Minnesota.
Dick W. D., Ziemann P. A., Huang P. F., McMurry P. H., 1998, Optical shape fraction measurements of submicron laboratory and atmospheric aerosols, Measurement Science and Technology 9 (2), 183-196.
Dzubay T. C. Stevens R. K. and Lewis C. W., 1982, Visibility and Aerosol Composition in Huston, Texas. Environ. Sci. Technol., Vol.25A, 514-524.
d’Almeida G. A., Koepke P. and Shettle E. P., 1991,Atmospheric Aerosol, In Global Climatology and Radiative Characteristics, A. Deepak, Hampton, Virginia.
Gras J., Ayer G. P.,1983, Marine aerosol at southern midlatitudes, Journal of Geophysical Research 88 (C15), 10661-10666.
Groblicki P. J., Wolff G. T. and Countess R. J., 1981, Visibility-Reducing Species in the Denver "Brown Cloud"-I. Relationships Between Extinction and Chemical Composition, Atmos. Environ., Vol.15, 2473-2484.
Harvath H. and Trier A. A., 1993, Study of the aerosol of Santiago De Chile-I. Light Extinction Coefficient, Atmos. Envir, Vol.27, 371-384.
Horvath H., 1996, Special Extinction Coefficients of Rural Aerosol in Southern Italy- A Case Study of Cause and Effect of Variability of Atmospheric Aerosol, J. Aerosol Sci., Vol.27, 437-453.
Hering S., Eldering A. and Seinfeld J. H., 1997, Bimodal Character of Accumulation Mode Aerosol Mass Distributions in Southern California, Atmos. Environ., Vol. 31, 1-11.
Horvath H., 1995, Size Segregated Light Absorption Coefficient of the Atmospheric Aerosol, Atmos. Environ., Vol.29, 875-883.
Hidy G. M., 1975,Summary of the California aerosol characterisation experiment. Journal of Air Pollution Control Association, Vol.25, 1106-1114.
Jeffery R. B., Tom F. D. and Richard C. O., 1997, The Relationship among TSP, PM10, PM2.5 and Inorganic Constitutes Atmospheric Particulate Matter at Multiple Canadian Locations, Journal of the Air & Waste Management Association 46,2-19.
Koutrakis P., Sioutas C., Ferguson S. T., Wolfson J. M., Mulk J. D. and Burton R. M., 1993, Development and Evaluation of a Glass Honeycomb Denuder/Filter Pack System to Collect Atmospheric Atmospheric Gases and Particles, Environ. Sci. Technol., Vol.27, 2497-2501.
Leaderer B. P., Tanner R. L., Lioy P. J. and Stolwijk A. J., 1981, Seasonal Variation in Light Scattering in the New York Region and Their Relation to Sources, Atmos. Environ., Vol.15, 2407-2420.
Le Canut P., Andreae M. O., Harris G. W., Wienhold F. G., Zenker T., 1996, Airborne studies of emissions from savanna fires in southern Africa 1, Aerosol emissions measured with a laser optical particle counter, Journal of Geophysical Research 101 (D19), 23615-23630.
Lee C. T. and Hsu W. C., 1996, The Source Apportionment of Urban Aerosols from Chemical Properties of Aerosol Spectra near Atmospheric Sources, J. Chinese Institute of Engineers, Vol. 19, 1-13.
Lee C. T. and Hsu W. C., 1998, A Novel Method to Measure Aerosol Water Mass, J. Aerosol Science, Vol. 29, 827-837.
Lee C. T., Lin N. H. et al., 1999, Local Circulation and Aerosol Water-soluble Ions —A Case Study in Taiwan during Mei-Yu Season, Chemosphere, Vol. 38, No. 2, 425-443.
Malm W.C. and Johnson C. E., 1984, Opticla Characteristics of Fine and Coarse Particulates at Grand Canyon, Arizona, Atmos. Environ., Vol. 18, 1231-1237.
Malm W. C., Gebhart K. A., Molenar J. V., Eldred E. A. and Sisler J. F., 1996, Examining the Relationship among Atmospheric Aerosols and Light Scattering and Extinction in the Grand Canyon Area, Journal of Geophysical Research, Vol. 101, No. D14, 19251-19265.
Malm W. C. and Kreidenweis S. M., 1997, The Effects of Models of Aerosol Hygroscopicity on the Apportionment of Extinction, Atmos. Environ., Vol. 31, 1965-1976.
McMurry P. H., 2000, A review of atomospheric aerosol measurements, Atomospheric Environment, Vol. 34, 1959-1999.
Meszaros A., 1977. On the size distribution of atmospheric aerosol particles of different composition, Atmospheric Evironment, Vol. 11, 1075-1081.
Morawska L., Thomas S., Bofinger N. D., Wainwright D., Neale D., 1998, Comprehensive characterisation of aerosols in a subtropical urban atmosphere: particle size distribution and correlation with gaseous pollutants, Atmospheric Environment, Vol. 32, 2467-2478.
Morawska L., Johnson G., Ristovski Z., Agranovski V., 1999b, Relation between particle mass and number for submicrometer airborne particle, Atmospheric Environment, submitted for publication.
Morawska, L., Thomas S., Jamriska M., Johnson G., 1999, The modality of particle size distributions of environmental aerosols, Atmospheric Environment, Vol. 33, 4401-4411.
Pitchford M. L. and McMurry P. H., 1994, Relationship Between Measured Water Vapor Growth and Chemistry of Atmospheric Aerosol for Grand Canyon, Arizona, in Winter 1990, Atmos. Envion., Vol. 28, 827-839.
Porter J. N., Clarke A. D., 1997, Aerosol size distribution models vased on in situ measurements, Journal of Geophysical Research, Vol. 102 (D5), 6035-6045.
Pryor S. C., Simpson R., Sakiyama S.,1997, Visibility and Aerosol Composition in the Fraser Vallry During Reveal, J. Air Waste Manage. Assoc., Vol. 47, 147-156.
Schwartz J., Dockery D. W. and Neas L. M., 1996, Is Daily Mortaility Associated Specifically with Fine Particles?, J. Air & Waste Manage. Assoc., Vol. 46, 927-939.
Sisler J. F., 1994, The Relative Importance of Soluble Aerosols to Spatial and Seasonal Trends of Impaired Visibility in the United States, Atmos. Environ., Vol. 27, 851-862.
Uhliz E. M., Stettler M. and Huene W. H., 1994, Experimental Studies on the Variability of the Extinction Coefficient by Different Air Masses, Atmos. Environ., Vol. 13, 811-814.
Waggoner A. P., Weiss R. E., 1980, Comparison of Fine Particle Mass Concentration and Light Scattering Extinction in Ambient Aerosol, Atmos. Eviron., Vol. 14, 623-326.
Waggoner A. P., Weiss R. E., Ahlquist N. C., Covert D. S., Will S. and Charlson R. J., 1981, Atmos. Environ., 1891-1909.
Weber R. J., Stolzenburg M. R., Pandis S. N., McMurry P. H., 1998, Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nanoparticle(3 to 10nm) size distributions, Journal of Aerosol Science, 29(5/6), 601-615.
Wendisch M. and Huene W. H., 1994, Possibility of Refractive Index Determination of Atmospheric Aerosol Particles by Ground-Based Solar Extinction and Scattering Measurements, Atmos. Environ., Vol. 28, 785-792.
Wilson T. R. S., 1975, Salinity and the major elements of sea water, Chemical Oceanography, 1, 2nd edtion., J. P. Riley and G. Skittow (eds.), Academic, Orlando, Fla.
Yoshizumi K., Hoshi A., 1985, Size distribution of ammonium nitrate and sodium nitrate in atmospheric aerosol, Environ. Sci. Technol., Vol. 19, 258-261.
Zhang X., Turpin B. J. and McMurry P. H.,1994, Mie Theory Evaluation of Species Contribution to 1990 Wintertime Visibility Reduction in the Grand Canyon, J. Air & Waste Manage. Assoc., Vol. 44, 153-162.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top