跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃浩展
研究生(外文):Hao-Chan Huang
論文名稱:絕緣層上覆矽之奈米光柵結構:設計與製作
論文名稱(外文):Silicon on Insulator Based Nano Grating Structure:Design and Fabrication
指導教授:郭宇軒
口試委員:李佳翰盧奕璋
口試日期:2010-10-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:英文
論文頁數:52
中文關鍵詞:光柵光柵耦合器絕緣層上覆矽光波導電子束微影時域差分法
外文關鍵詞:GratingGrating couplerSilicon on InsulatorWaveguideE-beam lithographyfinite-difference time-domain method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來由於網路的普及,應用於光電轉換的元件也因此蓬勃發展。為使光電轉換元件積體化,光波導相關元件於是被廣泛使用。絕緣層上覆矽之中的矽與二氧化矽有很大的折射率差距,且其製程和現有的半導體製程相符,為一合適的光波導材料。而光纖與絕緣層上覆矽為基材之光波導間的尺寸差距使得耦合效率欠佳,故本論文提出一個不需要破壞性測試的垂直式光耦器-光柵耦合器以解決以上問題。
  
本論文首先就幾項影響因素討論光柵耦合器的設計,設計出操作於C-波段下的光柵耦合器。藉著模擬軟體FullWAVE,檢視在C-波段之下,由先前分析所設計之光柵耦合器在其擁有製程缺陷以及量測條件誤差下的表現。光柵結構可以在標準的半導體製程下配合電子束微影製作出來。且在電子顯微鏡以及原子力顯微鏡的檢視之下,其實際結構與設計參數相仿,因此驗證可以至出高度周期性結構。本研究展現模擬與製造皆有良好結果,固未來此光柵結構可用於實現緊密之光耦合。


In recent years, the technology of the optoelectronic devices grows as the network is widely spread. The guided-optic device is developed for a compact optoelectronic integrated circuit. The SOI wafer is a promising material for guided optics due to the high refractive index mismatch between Si and SiO2 and the compatibility with CMOS fabrication. The huge mode difference between the fiber and the guided device limits the coupling efficiency, thus the grating coupler that needs no destructive testing is studied in this thesis to solve these problems.
The design of the grating coupler is investigated by various factors. The robust finite-difference time-domain (FDTD) software is used to simulate the grating coupler in this thesis. For the targeted C-band applications, the designed grating coupler is examined by the fabrication errors and the coupling errors under the simulations of FullWAVE. The grating structure is made by the standard CMOS fabrication with e-beam lithography, and detailed structure characterizations using SEM and AFM are performed, indicating highly-periodic structures can be fabricated. This study shows promising results in the simulation and fabrication of grating couplers for compact coupling in the future.


Abstract (Chinese) II
Abstract (English) III
Chapter 1: Introdution 1
1.1 Motivation 1
1.2 Optical Waveguide 1
1.3 Silicon-on-Insulator 3
1.4 Fiber-to-Waveguide Coupling 5
1.5 Organization of the Thesis 7
Chapter 2: Design and Anlaysis of Grating Coupler 8
2.1 Principle and Literature Review of Grating Coupler 8
2.1.1 Period Analysis 10
2.1.2 Filling Factor Analysis 12
2.1.3 Height Analysis 13
2.2 FullWAVE Simulation 14
2.2.1 Fabrication Error Analysis 17
2.2.2 Coupling Error Analysis 22
Chapter 3: Fabrication of Grating Coupler 24
3.1 Fabrication Procedure 24
3.1.1 Electron Beam Lithography 28
3.1.2 Reactive Ion Etching 31
3.2 Characterizations 33
3.2.1 SEM 34
3.2.2 AFM 36
Chapter 4: Conclusions 40
4.1 Summary 40
4.2 Future Work 42
References 43


[1]S. R. Forrest, "Optoelectronic Integrated-Circuits," Proc. IEEE, vol. 75, pp. 1488-1497, Nov. 1987.
[2]R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE, vol. 81, pp. 1687-1706, Dec. 1993.
[3]S. D. Personick, "Receiver Design for Optical Fiber Systems," Proc. IEEE, vol. 65, pp. 1670-1678, Dec. 1977.
[4]A. Liu, "A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor," Nature, vol. 427, pp. 615-618, Feb. 2004.
[5]L. Liao, D. Samara-Rubio, M. Morse, A. S. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express, vol. 13, pp. 3129-3135, Apr. 2005
[6]G. Cocorullo, M. Iodice, and I. Rendina, "All-Silicon Fabry-Perot Modulator Based on the Thermooptic Effect," Opt. Lett., vol. 19, pp. 420-422, Mar. 1994.
[7]I. P. Kaminow, "Optical integrated circuits: A personal perspective," J. Lightwave Technol., vol. 26, pp. 994-1004, Jun. 2008.

[8]H. Kogelnik, "An introduction to integrated optics," IEEE T. Microw. Theory, vol. 23, pp. 2-16, Jan. 1975.
[9]P. K. Tien, "Light Waves in Thin Films and Integrated Optics," Appl. Optics, vol. 10, pp. 2395-2413, May. 1971.
[10]H. F. Taylor and A. Yariv, "Guided Wave Optics," Proc. IEEE, vol. 62, pp. 1044-1060, Aug. 1974.
[11]D. Marcuse, "Wave-Propagation Along a Dielectric Interface," J. Opt. Soc. Am., vol. 64, pp. 794-797, Jun. 1974.
[12]Marcatil.Ea, "Dielectric Rectangular Waveguide and Directional Coupler for Integrated Optics," Bell Syst. Tech. J., vol. 48, pp. 2071-2102, May. 1969.
[13]G. K. Celler and S. Cristoloveanu, "Frontiers of silicon-on-insulator," J. Appl. Phys., vol. 93, pp. 4955-4978, May. 2003.
[14]H. W. Lam and R. F. Pinizzotto, "Silicon-on-Insulator by Oxygen Ion-Implantation," J. Cryst. Growth, vol. 63, pp. 554-558, Oct. 1983.
[15]J. B. Lasky, "Wafer Bonding for Silicon-on-Insulator Technologies," Appl. Phys. Lett., vol. 48, pp. 78-80, Jan. 1986.
[16]M. Bruel, B. Aspar, B. Charlet, C. Maleville, T. Poumeyrol, A. Soubie, A. J. Auberton-Herve, J. M. Lamure, T. Barge, F. Metral, and S. Trucchi, "Smart cut: a promising new SOI material technology," Proc. IEEE, pp. 178-179, Oct. 1995.
[17]A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh-Delta optical waveguide on silicon-on-insulator substrate," J. J. Appl. Phy. Part 2-Lett., vol. 40, pp. L383-L385, Apr. 2001.
[18]P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photonic Tech. Lett., vol. 16, pp. 1328-1330, May. 2004.
[19]W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol., vol. 23, pp. 401-412, Jan. 2005.
[20]I. Moerman, P. P. Van Daele, and P. M. Demeester, "A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices," IEEE J. Sel. Top. Quant., vol. 3, pp. 1308-1320, Dec. 1997.
[21]O. Mitomi, K. Kasaya, and H. Miyazawa, "Design of a Single-Mode Tapered Wave-Guide for Low-Loss Chip-to-Fiber Coupling," IEEE J. Quantum Elect., vol. 30, pp. 1787-1793, Aug. 1994.


[22]V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett., vol. 28, pp. 1302-1304, Aug. 2003.
[23]T. Tamir and S. T. Peng, "Analysis and Design of Grating Couplers," Appl. Phys., vol. 14, pp. 235-254, Jun. 1977.
[24]K. C. Chang, V. Shah, and T. Tamir, "Scattering and Guiding of Waves by Dielectric Gratings with Arbitrary Profiles," J. Opt. Soc. Am., vol. 70, pp. 804-813, Jul. 1980.
[25]T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, and M. R. Josey, "Effects of grating heights on highly efficient unibond SOI waveguide grating couplers," IEEE Photonic Tech. Lett., vol. 12, pp. 59-61, Jan. 2000.
[26]D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, "Grating couplers for coupling between optical fibers and nanophotonic waveguides," J. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 6071-6077, Aug. 2006.
[27]R. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. Top. Quant., vol. 12, pp. 1678-1687, Dec. 2006.
[28] R. G. Hunsperger, "Integraed Optics: Theory and technology," 5th Edition, Ch. 7, Springer.

[29]K. Handa, S. T. Peng, and T. Tamir, "Improved Perturbation Analysis of Dielectric Gratings," Appl. Phys., vol. 5, pp. 325-328, Aug. 1975.
[30]K. S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media," IEEE T. Antenn. Propag., vol. 14, pp. 302-307, May. 1966.
[31]K. Umashankar and A. Taflove, "A Novel Method to Analyze Electromagnetic Scattering of Complex Objects," IEEE T. Electromagn. C., vol. 24, pp. 397-405, Nov. 1982.
[32]T. Kashiwa, H. Kudo, Y. Sendo, T. Ohtani, and Y. Kanai, "The phase velocity error and stability condition of the three-dimensional nonstandard FDTD method," IEEE T. Magn., vol. 38, pp. 661-664, Mar. 2002.
[33]G. Mur, "Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations," IEEE T. Electromagn. C., vol. 23, pp. 377-382, Nov. 1981.
[34]J. P. Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves," J. Comput. Phy.s, vol. 114, pp. 185-200, Oct. 1994.
[35]T. K. Saha and W. D. Zhou, "High efficiency diffractive grating coupler based on transferred silicon nanomembrane overlay on photonic waveguide," J. Phys. D. Appl. Phys., vol. 42, pp.115 -123, Apr. 2009.
[36]M. Neviere, "About the theory of optical grating coupler-waveguide systems," Opt. Commun., vol. 8, pp. 085115-1-9, Jun. 1973.
[37]D. R. Herriott, "Electron-Beam Lithography," J Vac Sci Technol, vol. 20, pp. 781-785, Mar. 1982.
[38]J. T. Cox and G. Hass, "Antireflection Coatings for Germanium and Silicon in the Infrared," J. Opt. Soc. Am., vol. 48, pp. 677-680, Oct. 1958.
[39]International Technology Roadmap for Semiconductors (ITRS), http://public.itrs.net/
[40]T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, "Multiple electron-beam lithography," Microelectron. Eng., vol. 57-8, pp. 117-135, Sep. 2001.
[41]T. H. P. Chang, "Proximity Effect in Electron-Beam Lithography," J. Vac. Sci. Technol., vol. 12, pp. 1271-1275, Nov. 1975.
[42]M. Osawa, K. Takahashi, M. Sato, H. Arimoto, K. Ogino, H. Hoshino, and Y. Machida, "Proximity effect correction using pattern shape modification and area density map for electron-beam projection lithography," J. Vac. Sci. Technol. B, vol. 19, pp. 2483-2487, Dec. 2001.
[43]P. A. Peterson, Z. J. Radzimski, S. A. Schwalm, and P. E. Russell, "Low-Voltage Electron-Beam Lithography," J. Vac. Sci. Technol. B, vol. 10, pp. 3088-3093, Dec. 1992.
[44]G. P. Watson, L. A. Fetter, and J. A. Liddle, "Dose modification proximity effect correction scheme with inherent forward scattering corrections," J. Vac Sci. Technol. B, vol. 15, pp. 2309-2312, Dec. 1997.
[45]D. L. Flamm, V. M. Donnelly, and J. A. Mucha, "The Reaction of Fluorine-Atoms with Silicon," J. Appl. Phys., vol. 52, pp. 3633-3639, May. 1981.
[46] J. D. Plummer, M. D. Deal, and P. B. Griffin, "Silicon VLSI Technology:Fundamentals, Practice and Modeling,"Ch.10, Prentice Hall.
[47]G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett., vol. 56, pp. 930-933, Mar. 1986.
[48]C. J. Mogab, "Loading Effect in Plasma Etching," J. Electrochem. Soc., vol. 124, pp. 1262-1268, Aug. 1977.
[49]J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals," Solid State Commun., vol. 102, pp. 165-173, Apr. 1997.
[50]G. Roelkens, D. Van Thourhout, and R. Baets, "High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers," Opt. Lett., vol. 32, pp. 1495-1497, Jun. 2007.
[51]S. Scheerlinck, J. Schrauwen, G. Roelkens, D. Van Thourhout, and R. Baets, "Vertical fiber-to-waveguide coupling using adapted fibers with an angled facet fabricated by a simple molding technique," Appl. Optics, vol. 47, pp. 3241-3245, Jun. 2008.
[52]F. van Laere, G. Roelkens, J. Schrauwen, D. Taillaert, P. Dumon, W. Bogaerts, D. van Thourhout, and R. Baets, "Compact grating couplers between optical fibers and Silicon-on-Insulator photonic wire waveguides with 69% coupling efficiency," in the 2006 National Fiber Optic Engineers Conference., pp. 1-3., Mar. 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top