1.白子易、江舟峰、蔡嘉和、蔡曜聲、朱校興、廖婉君(2002),「以類神經網路預測三種型態污水處理廠出流水水質之研究」,朝陽學報,82:253-267。2.任彩法、凌鴻烈(1996),「ASSM-Ⅱ型聲學懸浮泥沙觀測系統」,聲學技術,15(2):68-72。
3.行政院環境保護署(2002),「台灣地區環境水質監測年報」,pp.28-31。
4.行政院環境保護署(2007),「新山水庫、翡翠水庫、石門水庫、寶山水庫、永和山水庫、明德水庫水質資料」,環境資料庫。
5.呂秀英、呂椿堂(1998),「綜合變方分析的正確使用」,科學農業,180:146-155。
6.許志揚(2003),「水利資訊學在流域數值模擬之應用 」,國立台灣大學土木工程學研究所博士學位論文。7.吳東熊、劉家勝(2006),「艾莉颱風對石門水庫集水區崩塌及濁度變化之影響」,水利,15:36-42。
8.林彥良(2001),「類神經網路應用於水庫集水區暴雨時期產砂量推估之研究」,國立台灣大學土木工程學研究所碩士學位論文。9.邵密華、劉廣遠(1998),「海洋疏濬過程懸浮物監測技術的研究」,海洋環境科學,17(3):55-60。
10.范正成、張郁麟、楊文仁、劉哲欣(2006),「倒傳遞類神經網路應用於石門水庫懸浮固體濃度之即時分析與預測」,中華水土保持學報,37(4):367-376。11.張斐章、張麗秋(2005),「類神經網路」,東華書局,pp.1-170。
12.郭益銘(1999),「應用多變量統計與類神經網路分析雲林沿海地區地下水水質變化」,國立台灣大學農業工程研究所碩士論文。13.郭記捷、任彩法(1998),「聲學懸浮泥沙觀測數據現場定標研究」,海洋學報,20(5):120-125。
14.楊文仁、范正成(2003),「運用類神經網路建立紋溝間土壤沖蝕推估模式之研究,中華水土保持學報」,34(3):271-279。15.雷祖強(2001),「衛星遙測及隨機變域模擬於水庫優有之機率評估」,國立台灣大學農業工程學研究所博士學位論文。16.賴柏勳、鐘朝恭、王瑋(2006),「颱風期間石門水庫濁度處理與應變措施」,水利,15:25-35。
17.錢玉珠(1999),「台灣地區集水區地文特性之初步分析」,國立台灣海洋大學河海工程學系碩士學位論文。18.謝明翰(2002),「應用倒傳遞類神經網路於水庫質之分析-以德基水庫為例」,國立台灣大學土木工程學研究所碩士學位論文。19.Baruah, P.J., M. Tamura, K. Oki, and H. Nishimura (2002), “Neural Network Modeling of Surface Chlorophyll and Sediment Content in Inland Water from Landsat Thematic Mapper Imagery Using Multidate Spectrometer Data,” [w:] Gilbert, G.D., Frouin, R.J. (Eds.), Ocean Optics: Remote Sensing and Underwater Imagery, Proceedings of SPIE the International Society for Optical Engineering, Seattle, 4488:205-212.
20.Bicknell, B.R., J.C. Imhoff, J.L. Kittle, A.S. Donigian, and R.C Johanson(1997), “Hydrological Simulation Program-FORTRAN, User''s Manual for Version 11,” Rep.No.EPA/600/R-97/080.
21.Brion, G.M. (2001), “Using neural networks to predict peak cryptosporidium concentrations,” Journal AWWA, pp.99-105.
22.Clair, T.A., and J.M. Ehrman (1996), “Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach,” Limnology and Oceanography 41:921-927.
23.Cigizoglu, H.K. (2002), “Suspended Sediment Estimation and Forecasting using Artificial Neural Networks,” Turkish J. Eng. Env. Sci., 26:15-25.
24.Doxaran, D., J.M. Froidefond, and P. Castaing (2003), “Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios,” Optical Society of America, 42(15):2623-2634.
25.Duncan, D. B. (1955), “Multiple range and multiple F test,” Biometrics 11:1-42
26.French, M., and F. Recknagel (1994), “Modeling of algal blooms in freshwaters using artificial neural networks,” Computer Techniques in Environmental Studies V, vol.II: environment systems. Computational Mechanics Publications, Boston. pp. 87-94.
27.Gomez, E.K., and A.A. Gomez (1984), “Statistical Procedures for Agricultural Research,” John Wiley & Sons. pp. 316-356.
28.Hebb, D.O. (1949), “The organization of behavior: A Neuropsychological Theory,” New York: Wiley.
29.Hopfield, J.J. (1984), “Neuron with Graded Response Have Collective Computational Properties Like Those of Two-state Neuron,” Proc. Nat. Sci., 88:3088-3092.
30.Kohonen, T. (1980), “A system-theoretical approach,” Springer.
31.Kwok, T.Y., and D.Y. Yeung (1997), “Constructive algorithms for structure learning in feedforward neural networks for regression problems,” IEEE Transaction on Neural Networks, 8(6):630-645.
32.Maier, H.R., and G.C. Dandy (1998), “Use of artificial neural networks for modeling cyanobacteria Anabaena spp. In River Murray, South Astralia,” Ecological Modeling, 105:257-272.
33.McCulloch, W.S., and W. Pitts (1943), “A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics, 5:115-133.
34.Northern Virginia Planning District Commission, Engineerss and Surveyors Institute (1992), “Northern Virginia Best Management Practice Handbook,” A Guide to Planning and Designing Best Management Practices in Northern Virginia, Annandale, VA.
35.Recknagel, F., M. French, P. Harkonen, and K. Yabunaka (1997), “Artificial neural network approach for modeling and perdiction of algal blooms,” Ecological Modeling, 96:11-28.
36.Ressom H., P. Natarjan, S. Srirangam, M.T. Musavi, R.W. Virnstein, L.J. Morris, and W. Tweedale (2004), “Neural network based light attenuation model for monitoring seagrass health,” Proceedings of the International Joint Conference on neural Networks (IJCNN 2004), Budapest, Hungary, July 25-29, 2004, 3:2489-2493.
37.Rosenblatt, F. (1958), “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychological Review, 65:386-408.
38.Rumelhart, D.E., G.E. Hinton, and R.J. Williams (1986), “Learning International Representation by Error Propagation,” Parallel Distributed Processing, 1:318-362.
39.Steel, R.G., and J.H. Torrie (1984), “principles and Procedures of Statistics.” McGraw-Hill, Inc. 2:356-360.
40.Tryon, R.C.(1957), “Communality of a Variable: Reformulation from Cluster Analysis,” Psychometrika, 22:241-260.
41.Widrow, B., and M.E. Hoff (1960), “Adaptive switching circuits,” IRE WESCON Convention Record, pp.96-104.
42.Wren, D.G., Barkdoll, B.D., Kuhnle, R.A., and Derrow, R.W. (2000), “Field Techniques for. Suspended-Sediment Measurement,” Journal of Hydraulic Engineering, American Society of Civil Engineers, 126(2):97-104.
43.Yabunaka, K., M. Hosomi, and A. Murakami (1997), “Novel application of a backpropagation artificial neural network model formulated to predict algal bloom,” Wat. Sci. Tech., 36(5):89-97.