跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/21 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張郁麟
研究生(外文):Yu-Lin Chang
論文名稱:倒傳遞類神經網路應用於台灣北部水庫懸浮固體濃度即時分析與預測之研究
論文名稱(外文):Application of Back Propagation Artificial Neural Network to Real Time Analysis and Prediction of the Total Suspended Solids in Northern Taiwan Reservoirs
指導教授:范正成范正成引用關係
指導教授(外文):Jen-Chen Fan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:51
中文關鍵詞:倒傳遞類神經網路倒傳遞類神經網路懸浮固體濃度非點源污染水質監測
外文關鍵詞:back propagation networktotal suspended solidsnon-point source pollutionwater quality monitoring
相關次數:
  • 被引用被引用:10
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
水庫集水區的治理、開發與操作,常會遭遇地表土壤沖蝕所產生的非點源污染。為了能夠有效防止此類災害的發生,隨時監測集水區的整治情況,以及建立完備的懸浮固體濃度即時監測系統是必要的。本研究以中華民國行政院環境保護署新山水庫、翡翠水庫、石門水庫、寶山水庫、永和山水庫、明德水庫水質監測數據查詢資料庫中1993-2005年間的資料來進行分析。從資料庫中所選許的水質參數有比導電度、溶氧、酸鹼值、濁度、溫度、採樣月份、葉綠素α、總磷、總硬度及透明度。然後利用水質之間的群集分析、測站之間的顯著性分析、水庫之間的相關性分析,進一步選取合適的水質參數和測站。再利用類神經網路架構來進行訓練、驗證網路即時推估懸浮固體濃度。經過一系列分析及觀察,發現類神經網路可以由水質參數推估懸浮固體濃度,但其推估的準確度依地理位置及土壤分布的不同而有所改變。結果亦顯示以類神經網路模式在一些條件下可利用數種容易量測的水質資料來推估不易量測的懸浮固體濃度。此外,以石門水庫水質資料利用倒傳遞類神經網路來預測懸浮固體濃度並作驗證,其結果顯示,預測與實測值的迴歸式係數達到0.90,表示推估趨勢十分良好;且網路輸出與期望輸出的判別係數R2達到0.63,顯示以本研究所提出之方法和石門水庫各項水質參數應用在其懸浮固體濃度之推估上,可預測到各個峰值,且可相當準確的預估其變化趨勢。
In the management of reservoir, non-point source pollutions caused by surface soil erosion are frequently encountered. In order to prevent this kind of problems, it is necessary to continually monitor the watershed of the reservoir as well as to real-time monitor the total suspended solid(TSS). The data of the water quality of Xin-Shan reservoir, Feitsui reservoir, Shimen reservoir, Baoshan reservoir, Yonghe-Shan reservoir, and Mingd reservoir used in the study were provided by Environmental Protection Administration of the Executive Yuan, R.O.C.. These data included electrical conductivity, dissolved oxygen, pH value, turbidity, temperature, month, chlorophyll-α, total phosphorus, total hardness, and transmissivity, in the period from 1993 to 2005. Suitable water quality parameters and observation stations were further chosen from the statistical results by cluster analysis of the water quality, dominance analysis of the observation stations, and correlation coefficient of the reservoirs. Back propagation artificial neural network was applied to real time analysis and prediction of the total suspended solids. However the estimation accuracy would vary with locations and soil types. From the results, it was also found that the nural network model may be used to estimate the concentration of suspended solids, which is difficult to be real time measured, by using several parameters of water quality, which are easier to be measured, under some specific conditions. When back propagation network was modified to predict the real time total suspended solids in Shimen reservoir, the results showed that the predicted variation tendency of total suspended solids in network output agrees well with that in expected output, the R2 can reach 0.63, the regression coefficient can reach 0.90. It could be concluded that the method of back propagation artificial neural network and water quality can be used to rapidly and accurately estimate TSS.
誌 謝 I
摘 要 II
ABSTRACT III
圖目錄 VII
表目錄 IX
第一章 前言 - 1 -
1.1 研究動機 - 1 -
1.2 研究目的 - 2 -
第二章 文獻回顧 - 4 -
2.1 懸浮固體濃度 - 4 -
2.2 懸浮固體濃度量測方法 - 4 -
2.3 統計分析 - 6 -
2.4 類神經網路推估 - 6 -
第三章 研究方法 - 9 -
3.1 研究區域簡介 - 11 -
3.1.1翡翠水庫環境背景資料 - 13 -
3.1.2新山水庫環境背景資料 - 13 -
3.1.3石門水庫環境背景資料 - 14 -
3.1.4寶山水庫環境背景資料 - 14 -
3.1.5永和山水庫環境背景資料 - 15 -
3.1.6明德水庫環境背景資料 - 15 -
3.2 參數資料概述 - 15 -
3.3 相關性 - 17 -
3.4 綜合變方分析 - 17 -
3.5 群集分析 - 18 -
3.6 倒傳遞類神經網路 - 19 -
第四章 倒傳遞類神經網路建置 - 22 -
4.1 輸入參數選取 - 22 -
4.1.1 測站選則 - 22 -
4.1.2 水質參數 - 24 -
4.2 隱藏神經元配置及比較 - 29 -
4.3 倒傳遞類神經網路即時推估懸浮固體濃度建置 - 31 -
4.4 倒傳遞類神經網路動態即時預測懸浮固體濃度建置 - 32 -
4.5 小結 - 34 -
第五章 網路模式之訓練與驗證 - 36 -
5.1 倒傳遞類神經網路即時推估懸浮固體濃度與驗證 - 36 -
5.2 倒傳遞類神經網路預測懸浮固體濃度與驗證 - 40 -
5.3 小結 - 43 -
第六章 結論與建議 - 45 -
6.1 結論 - 45 -
6.2 建議 - 46 -
參考文獻 - 48 -
附錄 - 52 -
附錄A:水庫水質站資料綜合分析 - 53 -
附錄B:水庫環境背景資料補充 - 59 -
附錄C:水庫水質測站位置 - 64 -
作者簡歷 - 70 -
1.白子易、江舟峰、蔡嘉和、蔡曜聲、朱校興、廖婉君(2002),「以類神經網路預測三種型態污水處理廠出流水水質之研究」,朝陽學報,82:253-267。
2.任彩法、凌鴻烈(1996),「ASSM-Ⅱ型聲學懸浮泥沙觀測系統」,聲學技術,15(2):68-72。
3.行政院環境保護署(2002),「台灣地區環境水質監測年報」,pp.28-31。
4.行政院環境保護署(2007),「新山水庫、翡翠水庫、石門水庫、寶山水庫、永和山水庫、明德水庫水質資料」,環境資料庫。
5.呂秀英、呂椿堂(1998),「綜合變方分析的正確使用」,科學農業,180:146-155。
6.許志揚(2003),「水利資訊學在流域數值模擬之應用 」,國立台灣大學土木工程學研究所博士學位論文。
7.吳東熊、劉家勝(2006),「艾莉颱風對石門水庫集水區崩塌及濁度變化之影響」,水利,15:36-42。
8.林彥良(2001),「類神經網路應用於水庫集水區暴雨時期產砂量推估之研究」,國立台灣大學土木工程學研究所碩士學位論文。
9.邵密華、劉廣遠(1998),「海洋疏濬過程懸浮物監測技術的研究」,海洋環境科學,17(3):55-60。
10.范正成、張郁麟、楊文仁、劉哲欣(2006),「倒傳遞類神經網路應用於石門水庫懸浮固體濃度之即時分析與預測」,中華水土保持學報,37(4):367-376。
11.張斐章、張麗秋(2005),「類神經網路」,東華書局,pp.1-170。
12.郭益銘(1999),「應用多變量統計與類神經網路分析雲林沿海地區地下水水質變化」,國立台灣大學農業工程研究所碩士論文。
13.郭記捷、任彩法(1998),「聲學懸浮泥沙觀測數據現場定標研究」,海洋學報,20(5):120-125。
14.楊文仁、范正成(2003),「運用類神經網路建立紋溝間土壤沖蝕推估模式之研究,中華水土保持學報」,34(3):271-279。
15.雷祖強(2001),「衛星遙測及隨機變域模擬於水庫優有之機率評估」,國立台灣大學農業工程學研究所博士學位論文。
16.賴柏勳、鐘朝恭、王瑋(2006),「颱風期間石門水庫濁度處理與應變措施」,水利,15:25-35。
17.錢玉珠(1999),「台灣地區集水區地文特性之初步分析」,國立台灣海洋大學河海工程學系碩士學位論文。
18.謝明翰(2002),「應用倒傳遞類神經網路於水庫質之分析-以德基水庫為例」,國立台灣大學土木工程學研究所碩士學位論文。
19.Baruah, P.J., M. Tamura, K. Oki, and H. Nishimura (2002), “Neural Network Modeling of Surface Chlorophyll and Sediment Content in Inland Water from Landsat Thematic Mapper Imagery Using Multidate Spectrometer Data,” [w:] Gilbert, G.D., Frouin, R.J. (Eds.), Ocean Optics: Remote Sensing and Underwater Imagery, Proceedings of SPIE the International Society for Optical Engineering, Seattle, 4488:205-212.
20.Bicknell, B.R., J.C. Imhoff, J.L. Kittle, A.S. Donigian, and R.C Johanson(1997), “Hydrological Simulation Program-FORTRAN, User''s Manual for Version 11,” Rep.No.EPA/600/R-97/080.
21.Brion, G.M. (2001), “Using neural networks to predict peak cryptosporidium concentrations,” Journal AWWA, pp.99-105.
22.Clair, T.A., and J.M. Ehrman (1996), “Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach,” Limnology and Oceanography 41:921-927.
23.Cigizoglu, H.K. (2002), “Suspended Sediment Estimation and Forecasting using Artificial Neural Networks,” Turkish J. Eng. Env. Sci., 26:15-25.
24.Doxaran, D., J.M. Froidefond, and P. Castaing (2003), “Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios,” Optical Society of America, 42(15):2623-2634.
25.Duncan, D. B. (1955), “Multiple range and multiple F test,” Biometrics 11:1-42
26.French, M., and F. Recknagel (1994), “Modeling of algal blooms in freshwaters using artificial neural networks,” Computer Techniques in Environmental Studies V, vol.II: environment systems. Computational Mechanics Publications, Boston. pp. 87-94.
27.Gomez, E.K., and A.A. Gomez (1984), “Statistical Procedures for Agricultural Research,” John Wiley & Sons. pp. 316-356.
28.Hebb, D.O. (1949), “The organization of behavior: A Neuropsychological Theory,” New York: Wiley.
29.Hopfield, J.J. (1984), “Neuron with Graded Response Have Collective Computational Properties Like Those of Two-state Neuron,” Proc. Nat. Sci., 88:3088-3092.
30.Kohonen, T. (1980), “A system-theoretical approach,” Springer.
31.Kwok, T.Y., and D.Y. Yeung (1997), “Constructive algorithms for structure learning in feedforward neural networks for regression problems,” IEEE Transaction on Neural Networks, 8(6):630-645.
32.Maier, H.R., and G.C. Dandy (1998), “Use of artificial neural networks for modeling cyanobacteria Anabaena spp. In River Murray, South Astralia,” Ecological Modeling, 105:257-272.
33.McCulloch, W.S., and W. Pitts (1943), “A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics, 5:115-133.
34.Northern Virginia Planning District Commission, Engineerss and Surveyors Institute (1992), “Northern Virginia Best Management Practice Handbook,” A Guide to Planning and Designing Best Management Practices in Northern Virginia, Annandale, VA.
35.Recknagel, F., M. French, P. Harkonen, and K. Yabunaka (1997), “Artificial neural network approach for modeling and perdiction of algal blooms,” Ecological Modeling, 96:11-28.
36.Ressom H., P. Natarjan, S. Srirangam, M.T. Musavi, R.W. Virnstein, L.J. Morris, and W. Tweedale (2004), “Neural network based light attenuation model for monitoring seagrass health,” Proceedings of the International Joint Conference on neural Networks (IJCNN 2004), Budapest, Hungary, July 25-29, 2004, 3:2489-2493.
37.Rosenblatt, F. (1958), “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychological Review, 65:386-408.
38.Rumelhart, D.E., G.E. Hinton, and R.J. Williams (1986), “Learning International Representation by Error Propagation,” Parallel Distributed Processing, 1:318-362.
39.Steel, R.G., and J.H. Torrie (1984), “principles and Procedures of Statistics.” McGraw-Hill, Inc. 2:356-360.
40.Tryon, R.C.(1957), “Communality of a Variable: Reformulation from Cluster Analysis,” Psychometrika, 22:241-260.
41.Widrow, B., and M.E. Hoff (1960), “Adaptive switching circuits,” IRE WESCON Convention Record, pp.96-104.
42.Wren, D.G., Barkdoll, B.D., Kuhnle, R.A., and Derrow, R.W. (2000), “Field Techniques for. Suspended-Sediment Measurement,” Journal of Hydraulic Engineering, American Society of Civil Engineers, 126(2):97-104.
43.Yabunaka, K., M. Hosomi, and A. Murakami (1997), “Novel application of a backpropagation artificial neural network model formulated to predict algal bloom,” Wat. Sci. Tech., 36(5):89-97.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top