跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 06:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊彰
研究生(外文):Chun-chang Huang
論文名稱:在離散的財務模型中擁有部分資訊下的最佳避險策略
論文名稱(外文):Optimal Hedging Strategy with Partial Information in Discrete Financial Model
指導教授:吳慶堂吳慶堂引用關係
指導教授(外文):Ching-tang Wu
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:45
中文關鍵詞:交易策略避險部分資訊可選擇的投影方法消費風險最小策略.
外文關鍵詞:Trading strategyhedgingpartial informationoptional projection methodconsumptionrisk-minimizing strategy.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
從一般投資者的觀點我們會在離散的時間投資某些資產, 因此, 我們通常從市場上觀察到離散的資訊. 在這篇論文裡對於離散型的財務模型我們給投資者三個主要的結果. 另一方面, 在一般財務機構的觀點下, 我們要去面對關於在擁有消費情況下, 如何去降低投資的風險.
最後我們和 Follmer 和 Sondermann (1986) 這篇論文有類似的結果.
From the perspectives of the investors, we invest in some assets in discrete time and thus, we usually observe the discrete information from the market. In this paper we give the investors three main results for our discrete financial model. On the other hand, from the perspectives of the financial institutions, we face the problem about how to reduce the risk of the investment with consumptions. Then we have similar conclusion with Follmer and Sondermann (1986).
Contents

Chapter 1. Introduction 1

Chapter 2. Optimal Strategy with Partial Information in Discrete Simple Model 3
2.1. Model Setup 3
2.2. Trading Strategy and Backward Inductions 5
2.3. Optimal Strategy with Partial Information Under Risk-Neutral Utility 6
2.4. Optimal Strategy with Partial Information Under Risk-Averse Utility 8

Chapter 3. Optimal Hedging Strategy with Partial Information in Discrete Simple
Model 13
3.1. Decomposition of an Attainable Contingent Claim 13
3.2. Optimal Hedging Strategy with Partial Information Under Backward
Induction 15
3.2.1. Risk-Neutral Utility 16
3.2.2. Risk-Averse Utility 17

Chapter 4. Optimal Strategy with Partial Information and Optional Projection
Method in Discrete Simple Model 21
4.1. Model Setup 21
4.2. Optional Projection Method 22
4.3. The Gaussian Case 24

Chapter 5. Risk-Minimizing Hedging Strategy with Consumption in Discrete
Financial Model 29
5.1. Wealth and Cost 29
5.2. Decomposition of a Contingent Claim 30
5.3. A Sequential Procedure for Risk-Minimizing Hedging Strategy 31

Chapter 6. Future Work 37

Bibliography 39
Bibliography
[1] Abhay G. Bhatt. Linear Filtering with Ornstein Ulhenbeck Process as Noise. Submitted for Publication. 2003.
[2] Bernt Oksendal. Stochastic Differential Equations : An Introduction with Applications , Sixth Edition. Springer. 2005.
[3] Damien Lamberton and Bernard Lapeyre. Introduction Stochastic Calculus Applied to Finance, First Edition. Springer. 1996.
[4] Hai-Bo Cheng. Risk-minimizing Duplicating Strategies under Partial Information. Journal of Fudan University, Natural Science. 43, 344-355, 2004.
[5] Hans Follmer and Dieter Sondermann. Hedging of Non-Redundant Contingent Claims. Contributions to Mathematical Economics. 205-223, 1986.
[6] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus, Second Edition. Springer. 1988.
[7] Ioannis Karatzas and Xing Xiong Xue. A Note on Utility Maximization under Partial Observations. Mathematical Finance 1, 57-70, 1991.
[8] Jaksa Cvitanic and Ioannis Karatzas. Convex Duality in Continuous Portfolio Optimization. The Annals of Applied Probability 2, 767-818, 1992.
[9] Martin Baxter and Andrew Rennie. Financial Calculus An Introduction to Derivative Pricing, First Edition. Cambridge University Press. 1996.
[10] Martin Schweizer. Risk-Minimizing Hedging Strategies under Restricted Information. Mathematical Finance. 4, 327-342, 1994.
[11] Martin Schweizer. Variance-Optimal Hedging in Discrete Time. Mathematics of Operations Research. 20, 1-32, 1995.
[12] Peter Lakner. Utility Maximization with Partial Information. Stochastic Processes and Their Applications 56, 247-273, 1995.
[13] Robert J. Elliott, Lakhdar Aggoun and John B.Moore. Hidden Markov Models Estimation and Control, Vol. 1, 1st edn. Springer-Verlag, 2005.
[14] Steven E. Shreve. Stochastic Calculus for Finance : The Binomial Asset Pricing Model, Vol. 1, 1st edn. Springer, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top